Satellite Application Facility for Numerical Weather Prediction › Forums › RTTOV › RTTOV v13 › RTTOV v13 General Discussion › RTTOV13 – TIRS radiance values not inline with Apparent temperatures
- This topic has 6 replies, 3 voices, and was last updated 2 years, 6 months ago by Tania Kleynhans.
-
AuthorPosts
-
February 10, 2022 at 2:35 pm #47209Tania KleynhansParticipant
I have just installed RTTOV131, and am using the python wrapper. When running the example code (interface_example_python.py) and changing the sensors to Landsat8 TIRS (rtcoef_landsat_8_tirs_o3co2.dat), the results for the BT clear values makes sense, however, the radiance clear values (rttov_get_rad_clear) does not agree with the BT clear values when converting from apparent temperature to radiance.
When running the same data with MODTRAN, the BT values are close (within 0.3K) however the radiance values are not. See below output of this.Any suggestions? Is there a flag that I might have missed to get accurate TOA radiance?
Surface emissivity used by RTTOV (band 10 and 11 for clear sky simulation)
[0.96620134 0.93741832]
Clear-sky BT (K)
[266.87852644 265.35826853]
Clear-sky Radiance (w/m^2/sr/um)
[6.57496681 7.58112579]February 10, 2022 at 4:30 pm #47211James HockingKeymasterHi,
Are you applying any “band correction” when converting between radiances and brightness temperatures?
The Planck function converts between temperatures and radiances at monochromatic wavelengths. When applying the Planck function to radiometer channels, we must account for the finite width of the sensor channels. In RTTOV this is done via a linear temperature “band correction”. The offsets and slopes of the band correction for each channel are stored in the “rtcoef” coefficient file for the given sensor, in the FILTER_FUNCTIONS section.
When computing Planck radiances from atmospheric temperatures, the corrections are applied as (a + b.T) for temperature T, where a is the offset and b is the slope. The Planck function is then applied to the resulting effective temperature. When TOA radiances are converted to brightness temperatures using the inverse Planck function, the output brightness temperature is ((Tb – a) / b) where Tb is the output of the inverse Planck function applied to the TOA radiance. In all applications of the Planck function, the channel central wavenumber is used (also in the FILTER_FUNCTIONS section of the coefficient file).
This band correction should be applied as it is a real, physical correction: it only affects radiances, and has almost no effect on brightness temperatures.
The band correction method used in RTTOV is the “Effective Temperature Method” described in this paper:
sharp_1983_radiance_to_bt_conversion.pdfLet me know if this doesn’t answer your question.
Best wishes,
James—
James Hocking
RTTOV/RadSim developerFebruary 11, 2022 at 2:25 pm #47218Tania KleynhansParticipantHi James,
Thanks for the answer, and no, I did not use the band corrections since I have created LUT’s sampled with the TIRS SRS’s to go between radiance to apparent temperature for each band. However, neither my method nor the band corrections will create this large of an difference. Note the example above – the TOA radiance values (converted to apparent temperatures) are out by ~10K for band 10 and ~20K for band 11.
This is why I am wondering if the “rttov_get_rad_clear” is not the correct call to get TOA radiance? Or if the “rttov_get_bt_clear” is not at sensor apparent temperature?
Note, when running RTTOV with 0.00001 emissivity, and calculating the TOA radiance from upwell, downwell, transmission, skin temperature and emissivity as in initial example, then the answers does not nearly match the “rttov_get_rad_clear” values, but are close to the converted apparent temperature values.Any other suggestions?
February 11, 2022 at 3:30 pm #47221James HockingKeymasterHi,
The radiance units that you printed in your output are not the units that RTTOV uses: RTTOV radiances are in
[mW/m^2/sr/cm^-1].The radiance values you printed correspond exactly to the brightness temperatures (computed with the RTTOV band correction) except they are a factor of 10 too small. The rttov_get_rad_clear function is the correct one to use, the clear radiances must correspond to the clear-sky BTs because the BTs are computed from the radiances, so if those radiances and BTs are both coming from RTTOV something odd is going on!
I’ve run a quick test using pyrttov and the clear radiances and BTs agree.
Can you provide me with a simple example of your code and an input profile so that I can replicate what you are doing and understand what the issue is?
Thanks,
JamesFebruary 22, 2022 at 3:46 pm #47265Tania KleynhansParticipantHi James,
Thanks – and yes – I convert the radiance to W/m^2/sr/um (a factor of 10).
Below the code that I run (it is 99% the same as the example code – with just a few minor changes to TIRS sensor, using only one profile, and a fixed emissivity of 0.98).
Hope this helps.#!/usr/bin/env python3
# -*- coding: utf-8 -*-
“””
Created on Wed Feb 2 09:08:16 2022@author: tkpci
“””import numpy as np
#from example_data_tk import *
from read_TIGR_RTTOV import read_TIGR
from rttov_wrapper_f2py import *
import sysdef run_RTTOV(emis10, emis11, num = 1000):
# read TIGR profiles into dictionary (set to read only 200 selected profiles for test)
profile = read_TIGR(num) # read each profiles as TIGR_data[i] – where i is a sting from 0 to 200# read in pressure levels [hPa] surface last
p_ex = np.flip(np.array(profile[‘preshPa’], dtype=np.float64))
# read in air temperature levels [K]
t_ex = np.flip(np.array(profile[‘tempK’], dtype=np.float64))
# read in water vapor
q_ex = np.flip(np.array(profile[‘cwv’], dtype=np.float64))
# See wrapper user guide for gas IDs (page 48) – Id 1 = water vapor
gas_id_q = 1
# Set profile gas_units: 0=>ppmv over dry air; 1=>kg/kg; 2=>ppmv over moist air
gas_units = 2 # ppmv# q_ex = q_ex[-43:,]
# gas_units = 2 # ppmv over moist air# Define number of profiles and number of levels
nprofiles = 1
nlevels = len(p_ex)# The gas ID array tells the wrapper which gases, aerosol and cloud profiles are being supplied:
# it must specify water vapour in all cases plus any other optional items;
gas_id = np.array([gas_id_q], dtype=np.int32)# Define arrays for pressure, temperature and gases/clouds/aerosols;
# specify Fortran (‘F’) order for array storage to be more efficient
p = np.empty((nlevels, nprofiles), order=’F’, dtype=np.float64)
t = np.empty((nlevels, nprofiles), order=’F’, dtype=np.float64)
gases = np.empty((nlevels, nprofiles, len(gas_id)), order=’F’, dtype=np.float64)# Populate the pressure, temperature, q and co2 arrays: these are the same for both profiles
for i in range(nprofiles):
p[:, i] = p_ex[:]
t[:, i] = t_ex[:]
q_ex = q_ex/621.9907 * 10**6 # convert from g/kg to ppmv
gases[:, i, 0] = q_ex[:] # index 0 in gas_id array above is water vapour# Initialise cloud inputs to zero
#gases[:, :, 2:] = 0.# Logical flag to set cloud and aerosol units: true => kg/kg (cld+aer);
mmr_cldaer = 0# datetimes[6][nprofiles]: yy, mm, dd, hh, mm, ss
datetimes = np.array([[2015, 8, 1, 0, 0, 0]], dtype=np.int32)# angles[4][nprofiles]: satzen, satazi, sunzen, sunazi (for those – like me – thinking this is Japanese, no, its for satellite zenith, sun azimuth etc)
angles = np.array([[0., 0., 45., 180.]], dtype=np.float64)# surftype[2][nprofiles]: surftype (0=land,1=sea,2=sea-ice), watertype % used for surface solar BRDF model only
surftype = np.array([[0, 0]],dtype=np.int32)# surfgeom[3][nprofiles]: lat, lon, elev
surfgeom = np.array([profile[‘lat’], profile[‘lon’],profile[‘alt’]], dtype=np.float64)# s2m[6][nprofiles]: 2m p, 2m t, 2m q, 10m wind u, v, wind fetch
#s2m = np.array([[1013., 0.263178E+03, 0.236131E+04, 4., 2., 100000.]], dtype=np.float64)
s2m = np.array([[p_ex[-1], t_ex[-1], q_ex[-1], 0., 0., 0.]], dtype=np.float64)# skin[9][nprofiles]: skin T, salinity, snow_frac, foam_frac, fastem_coefsx5 (RTTOV default for land 3. 0, 5.0, 15.0, 0.1, 0.3)
skin = np.array([[np.round(profile[‘lst’],1), 0., 0., 0., 3.0, 5.0, 15.0, 0.1, 0.3]], dtype=np.float64)# simplecloud[2][nprofiles]: ctp, cfraction
simplecloud = np.array([[0., 0.]], dtype=np.float64)# clwscheme[nprofiles]: clw_scheme, clwde_param
clwscheme = np.array([[0, 0]], dtype=np.int32)# icecloud[2][nprofiles]: ice_scheme, icede_param
icecloud = np.array([[0, 0]], dtype=np.int32)# zeeman[2][nprofiles]: be, cosbk
zeeman = np.array([[0., 0.]], dtype=np.float64)# The remaining profile data is specified in example_data.py
# Note that most arrays in example_data.py need to be transposed
# for use with the direct wrapper interface rather than pyrttov:
datetimes = datetimes.transpose()
angles = angles.transpose()
surftype = surftype.transpose()
surfgeom = surfgeom.transpose()
s2m = s2m.transpose()
skin = skin.transpose()
simplecloud = simplecloud.transpose()
clwscheme = clwscheme.transpose()
icecloud = icecloud.transpose()
zeeman = zeeman.transpose()# =================================================================
# =================================================================
# Load the instrument# Specify RTTOV and wrapper options. In this case:
# – turn interpolation on
# – provide access to the full radiance structure after calling RTTOV
# – turn on the verbose wrapper option
# NB the spaces in the string between option names and values are important!
# set store_rad2 to get down and upwelling radiance as well (not just total rad)
opts_str = ‘opts%interpolation%addinterp 1 ‘ \
‘store_trans 1 ‘ \
‘store_rad 1 ‘ \
‘store_rad2 1 ‘ \
‘verbose_wrapper 0 ‘# Specify instrument and channel list and add coefficient files to the options string
rtcoef_dir = ‘/dirs/data/tirs/RTTOV/rttov131.common/rtcoef_rttov13/’#################################################################
rtcoef_file = rtcoef_dir + ‘rttov13pred54L/rtcoef_landsat_8_tirs_o3co2.dat’
sccldcoef_file = rtcoef_dir + ‘cldaer_visir/sccldcoef_landsat_8_tirs.dat’nchannels = 2
channel_list = np.arange(1, nchannels+1, 1, dtype=np.int32)opts_str += ‘ file_coef ‘ + rtcoef_file + \
‘ file_sccld ‘ + sccldcoef_file# Call the wrapper subroutine to load the instrument and check we obtained a valid instrument ID
inst_id = rttov_load_inst(opts_str, channel_list)
if inst_id < 1:
print(‘Error loading instrument’)
sys.exit(1)
# =================================================================# =================================================================
# Initialise emissivity atlas# emis_atlas_path = ‘/dirs/data/tirs/RTTOV/rttov131.common/emis_data/’
# month = datetimes[1, 0] # Month is taken from the profile date# # Call the wrapper subroutine to set up the IR emissivity atlas
# # NB we specify inst_id here so the atlas is initialised for this specific instrument for faster access;
# # to initialise the atlas for use with multiple instruments pass 0 as the inst_id
# # (see wrapper user guide for more information)
# atlas_wrap_id = rttov_load_ir_emis_atlas(emis_atlas_path, month, -1, inst_id, 0)
# if atlas_wrap_id < 1: print(‘Error loading IR emissivity atlas: atlas will not be used’)
# =================================================================# =================================================================
# Declare arrays for other inputs and outputs# Define array for input/output surface emissivity and BRDF
surfemisrefl = np.empty((nchannels, nprofiles, 4), order=’F’, dtype=np.float64)# # Define direct model outputs
btrefl = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
rad = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)# # =================================================================
# # specify emissivity for each channel
surfemisrefl[:,:,:] = -1.
surfemisrefl[0,:,0] = emis10 # first band (10)
surfemisrefl[1,:,0] = emis11 # second band (11)# =================================================================
# Call RTTOV# # Initialise the surface emissivity and reflectance before every call to RTTOV:
# # in this case we specify a negative number to use the IR atlas over land
# # (because we initialised it above) and to use RTTOV’s emissivity models over sea surfaces
# # surfemisrefl[:,:,:] = -1.# # Use atlas
# if atlas_wrap_id > 0:
# err = rttov_get_emisbrdf(atlas_wrap_id, surfgeom[0], surfgeom[1], surftype[0], surftype[1], \
# angles[0,:], angles[1,:], angles[2,:], angles[3,:], skin[2,:], \
# inst_id, channel_list, surfemisrefl[:,:,0])
# if err != 0:
# print(‘Error returning atlas emissivities: not using atlas’)
# surfemisrefl[:,:,:] = -1.
err = 0
# Call the wrapper subroutine to run RTTOV direct
err = rttov_call_direct(inst_id, channel_list, datetimes, angles, surfgeom, surftype, skin, s2m, \
simplecloud, clwscheme, icecloud, zeeman, p, t, gas_units, mmr_cldaer, \
gas_id, gases, surfemisrefl, btrefl, rad)
if err != 0:
print(‘Error running RTTOV direct’)
sys.exit(1)
# =================================================================# =================================================================
# Examine outputs# Outputs available are:
# – surfemisrefl array contains surface emissivities (and reflectances) used by RTTOV
# – rad array contains RTTOV radiance%total array
# – btrefl array contains RTTOV radiance%bt and radiance%refl arrays (depending on channel wavelength)
# – it is also possible to access the whole radiance structure because we set the store_rad option abovedataRTTOV = {}
dataRTTOV[’emis10′] = surfemisrefl[0,0,0]
dataRTTOV[’emis11′] = surfemisrefl[1,0,0]btclear = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
err = rttov_get_bt_clear(inst_id, btclear) # get brightness temperaturedataRTTOV[‘T10’] = np.round(btclear[0,0],3)
dataRTTOV[‘T11′] = np.round(btclear[1,0],3)rad = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
err = rttov_get_rad_clear(inst_id, rad) #mW/cm-1/sr/m2dataRTTOV[‘rad10’] = np.round(rad[0,0]/10,2) # convert to W/m^2/sr/um
dataRTTOV[‘rad11′] = np.round(rad[1,0]/10,2) # convert to W/m^2/sr/umtrans = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
err = rttov_get_tau_total(inst_id, trans)dataRTTOV[‘trans10’] = np.round(trans[0,0],2)
dataRTTOV[‘trans11′] = np.round(trans[1,0],2)upwell = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
err = rttov_get_rad2_upclear(inst_id, upwell) #mW/cm-1/sr/m2dataRTTOV[‘upwell10’] = np.round(upwell[0,0]/10,2) # convert to W/m^2/sr/um
dataRTTOV[‘upwell11′] = np.round(upwell[1,0]/10,2) # convert to W/m^2/sr/umdownwell = np.empty((nchannels, nprofiles), order=’F’, dtype=np.float64)
err = rttov_get_rad2_dnclear(inst_id, downwell) #mW/cm-1/sr/m2dataRTTOV[‘down10’] = np.round(downwell[0,0]/10,2) # convert to W/m^2/sr/um
dataRTTOV[‘down11’] = np.round(downwell[1,0]/10,2) # convert to W/m^2/sr/umdataRTTOV[‘LST’] = np.round(profile[‘lst’],1) # rounding to 1 decimal since MODTRAN rounds the profiles to that
return dataRTTOV
# =================================================================
# =================================================================
# Deallocate memory for all instruments and atlases#err = rttov_drop_all()
#if err != 0: print(‘Error deallocating wrapper’)
# =================================================================February 24, 2022 at 10:08 am #47273James HockingKeymasterHi,
I think your conversion of radiance (strictly “spectral radiance” – see below) units is not correct.
If L is the radiance (mW/sr/m^2) and L_wvn and L_wvl are the spectral radiances in mW/sr/m^2/cm^-1 and mW/sr/m^2/um respectively, then we can write the following:
L_wvl = d(L)/d(wvl) = d(L)/d(wvn) * d(wvn)/d(wvl) = L_wvn * d(wvn)/d(wvl)
And we have:
wvn = 10000 / wvl
where wvn is in cm^-1 and wvl is in um (microns).Therefore the conversion is (where we take the absolute value of d(wvn)/d(wvl)):
L_wvl = L_wvn * 10000 / wvl^2 = L_wvn * wvn^2 / 10000
To convert from mW to W is then just an additional factor of 1E-3.
You should take the channel central wavenumbers (wvn) from the RTTOV rtcoef file (in the “FILTER_FUNCTIONS” section).
Does this solve the issue?
Best wishes,
James- This reply was modified 2 years, 6 months ago by James Hocking.
March 7, 2022 at 3:50 pm #47318Tania KleynhansParticipantHi James,
I appreciate all the time you are taking to answer my question. And you are correct. Thanks for the help -
AuthorPosts
- You must be logged in to reply to this topic.