EUMETSAT

@ OSISAF

OCEAN AND SEA ICE

Document NWPSAF-KN-DS-001
Version 4.0.02
August 2022

PenWP Top Level Design

OSI-501-c

Anton Verhoef, Jur Vogelzang, Jeroen Verspeek and Ad Stoffelen

KNMI, De Bilt, the Netherlands

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
PenWP Top Level Design

KNMI, De Bilt, the Netherlands

This documentation was developed within the context of the EUMETSAT Ocean and Sea Ice
Satellite Application Facility (OSI SAF).

Copyright 2022, EUMETSAT, All Rights Reserved.

Change record

Version | Date Author / changed by | Remarks

1.9 May 2015 | Anton Verhoef First version for PenWP beta release

2.0 Oct 2015 | Anton Verhoef Version for first public PenWP release, split
original UM into UM, PS and TLD docs

2.0.01 Nov 2015 | Anton Verhoef Modified according to DRI comments

2.1 Feb 2017 | Jur Vogelzang Added NBECs

2.2 May 2018 | Jur Vogelzang Extended 2DV AR description; adapted to new
2DVAR

4.0 Mar 2022 | Anton Verhoef Version for PenWP v4.0 DRR

4.0.01 June 2022 | Anton Verhoef Modified according to DRR comments

4.0.02 Aug 2022 | Anton Verhoef Some small changes in Class Diagrams

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Contents
CONTENTS 1
1 INTRODUCTION 3
1.1 USER REQUIREMENTS......ottiuttttieeeieeiiteeeeeeeeeeiestaeeeeeeeeseestaseeeseesseasaasesseesseasiassessesesesnssraeseeeessssnssrereeees 3
1.2 CONVENTIONS.....ceiuttiuttittenttenttente et eute et e stee bt enteeaeeeatesatesaeesbee bt emeeeateeaeeabeenbe e bt enbeembesseesaeenbeeneeenseeneeans 3
2 PROGRAM DESIGN 4
2.1 TOP LEVEL DESIGN.....ciiiiiiiiiiiiieiieteeiteeit ettt ettt sttt et et e be e e eane s st e saee st enneenneeas 4
2,11 MaIR PFOGFAM ...t 4
2.1.2 Layered MOdel SIFUCHUTEc..ccccueuioiiiiiiiiiiit ettt 5
2.1.3 DAEA SIPUCIUTE ...t ettt e e 6
2.1.4 Quality flagging and error RANAIING..................cccceceiiiiiiniiiiiiiieeeeeeee e 7
201,85 VEIDOSILY ..ot ettt et ettt et ettt e e taeetae s 7
2.2 MODULE DESIGN FOR GENSCAT LAYER ...c..eeitiiittettiieaiesitenteenteeteeteettesttesteesbeenseensesneesmeesaeenseenseenneans 8
2.2. 1 MOAULC TV SION ..o 8
2.2.2 MOdULe GIMBIEMccceoe oo 8
2.2.3 Module icemOdel.......................c..ooeoeeeeeeee e 8
224 Module BUfFio MOAUIe.coreeiiiiiiei et 8
2.2.5 Module gribio MOAUIE..................ccccoeouioiiiiiiiiiiiit it 9
226 Module HDFSMOC..............c....cccoeeeeieeeeeeeeeeeeee ettt 9
2.2.7 SUPPOFE MOAUIES ...ttt ettt ettt 9
2.3 MODULE DESIGN FOR PROCESS LAYERcteruttititeittetteeieeetteenttesbeeeteesbeeeseesbeesnseesseesnseesseesnseens 10
231 MOAUIE PERWD AALA..............ccooiiiiieiiiiiii st 10
2.3.2 MOAUIE PERWD DUSF ..ottt e 17
2.3.3 MOAUle PERWD _PFEPOSE.........oeeeeeeieeie ettt 17
2.3.4 Module PeRnWD CAIIDIALEc.ccoeeiiiiieiee ettt 18
2.3.5 MOAule PERWD GFID ..ot e 18
2.3.6 MoOdule PERWD THVETSIONc..cc.eeietieieeeeeet ettt ettt et ens 19
2.3.7 Module PERWD GAMBFEML..............ccc.oioiiiiiiieeiet et 20
2.3.8 Module penwp CEMOUELc.cccooeiiiiiiiiet e 20
2.3.9 MOGUIE PERWP ...ttt e 20
2.3.10 HDF to0 BUFR CONVEISION LOOLSc.c..oooeeeeieiieeeeeeeeeee e 21
3 INVERSION MODULE 22
3.1 BACKGROUND.....cccttitieitieitenitetteste et et sete st esteesttest e eaaeeasesusesbe e bt esbeesseeasesaeesaeesaeenaeenstensesanesseenbeennens 22
3.2 ROUTINES «..ootiiiiiiietieiteeit ettt et ettt sttt e e ettt eae e sa e s bt et et easeeatesaeesaeesaeemaeentteasesunesueenbeenreen 22
3.3 ANTENNA DIRECTIONotitiiitietieteeteeteattesteesteenteenteesteeueesseesteenseenseassesmseseeesaeenaeenseenteensesseesseenseansens 23
4 AMBIGUITY REMOVAL MODULE 25
4.1 AMBIGUITY REMOVALooitiiiiiiiiieitiest ettt ettt ettt b ettt st st esaeesae e bt e bt eateebeenbeenbean 25
4.2 MODULE AMBREM.....c..ctttiiuteitentteete et testte it ete ettt sat e st et et sa et e a e eeb e e bt e bt e eeesatesatenaeenteenteenteebeenbeensean 25
4.3 MODULE BATCHMODcocuteiiteiiaiieiiesieesieeee ettt ettt ettt b ettt sttt s atesae e et et e eatesneenbeenbean 26
4.4 THE KNMI2DVAR SCHEMEocttitieitieteeteeteaitesttesttete et eueesteesteenbeensesseesatesaeenaeenseenseeneesseenseensens 29
441 INIPOAUCTION ...t 29
4.4.2 Data structure, interface and iRIIALISATION.c..ccoeevueiieiieiiiieeieee e 29
4.4.3 Reformulation and transSformationccc.ccoceoueeeririiniiiiiiiieeeeseee et 32
444 Module COSHEUNCIIONccccuee et 32
4.4.5 AdJOINE MEIROM. ...ttt e 33

.46 SUCTUFE JFURCHIONS. ...ttt nsnenannnen 33

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Bo4.7 MIBUIIZAEION <. eeeeeaees 33
4.4.8 SingletonFFT MOAULe..............ccccoocuiiiiiiiiiiiiiitieee ettt 34
5 MODULE ICEMODELMOD 36
5.1 BACKGROUND......uutiiiiiiiieiitttee e e e eeecitaee e e e e eeeeettaraeeeeeeeeettaaaeeeeeeeeettaaraaeeeeeeeaataeseaeseeestataseeeeeeeeanntrsreaeeas 36
5.2 ROUTINES ..o iiiottitteee ettt e e e e e et e e e e e e eetaaaeeeeeeeeetaaraaeeeeeeeaataeaeaeeeeesstaaseeeeeeeenntrrreaenas 37
5.3 DATA STRUCTUREScootiittttteeeeeeeecitteeeeeeeeeeeataeeeeeeeeeetaaaeeeeeeeeesarsaaeeeeeeeeataereaeseeeaiatasseeeeeeeenrrsreneees 37
6 MODULE BUFRIO_MODULE 39
(N B £ 7X@ €230 01 RO 39
0.2 ROUTINES ..ottt ettt ettt e e e e e et e e e e e e ettt et e e e e e see e eeeeeeseenasaaeeeeesseanataareeeeesssnntaareeeeas 39
6.3 DATA STRUCTUREScottiittttieieeeieeiitteeeeeeeeeeetaereeeeeeeeetaaeeeeeessessaareseeeessasstaereeesseansstaareeeeesssntaereeeeas 40
0.4 LIBRARIESoitiiutetteeeeeeeeete et e e et eeetaee e e e e e e e et e et eeeeeeeeaaaaeeeeeeeseaaaaseeeeesseaasaaeeeeesseenatanseeeeessnntaereeeeas 41
LT T 510 2 2 VN =3 51 21 SO 41
7 MODULE GRIBIO_MODULE 42
Tl BACKGROUND......uuttiiiiiiieiititeeee e e eeecitaee e e e e eeeeetaareeeeeeeeettaaaeaeeeeeeestaaraaeeeeeeaasrseseeeeeeeatatasreeeeeesanntrrreeeeas 42
T2 ROUTINES ..ot iiooiieeeee ettt e e ee et e e e e e e et taa e e e e e e e eeetaaraaeeeeeeeaataaeeeeeeeeeattasseeeeeeeenatrrreeenas 42
7.3 DATA STRUCTUREScoetiittttieeeeeeeeiitteeeeeeeeeeeetaereeeeeeeeeetaaaeeeeeeeeestrseaeeeeeeeastaeeeaeeeeesistasseeeeeeeantrrreeeees 44
T4 LIBRARIES.....coiiiitutteeeeeeeeeeiteeee e e e eee ettt e e e e eeeeetaaaeeeeeeeeetaaaeeeeeeeeeasasaaeeeeeeeassaeeeeeeeeaaatasseeeeeeeenntrsreseeas 45
REFERENCES 46
APPENDIX A: CALLING TREE FOR PENWP 48
APPENDIX B1: CALLING TREE FOR INVERSION ROUTINES 56
APPENDIX B2: CALLING TREE FOR AR ROUTINES 58
APPENDIX B3: CALLING TREE FOR BUFR ROUTINES 62
APPENDIX B4: CALLING TREE FOR GRIB ROUTINES 64
APPENDIX B5: CALLING TREE FOR HDF5 ROUTINES 66
APPENDIX B6: CALLING TREE FOR ICE MODEL ROUTINES 69
APPENDIX C: ACRONYMS 70
APPENDIX D: UML CLASS DIAGRAMS 71

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

1 Introduction

The Pencil Beam Wind Processor (PenWP) is a software package written mainly in Fortran 90. The
parts and libraries for handling HDF5, NetCDF, and BUFR format data have been partly written in
C. The processor can handle data from the SeaWinds (on QuikSCAT or ADEOS-II), OSCAT (on
Oceansat-2 or ScatSat-1), HSCAT (on HY-2A, HY-2B, HY-2C and HY-2D) and RapidScat (on the
International Space Station) scatterometer instruments. This document is the Top Level Design
(TLD) of the PenWP software package and it also contains the Module Design. Section 2 provides
information on the general design of the PenWP software. Section 3 and further provide information
on the individual modules that are part of PenWP.

More information about PenWP can be found in several other documents. The User Manual and
Reference Guide (UM) [1] contains more details about the installation and use of the PenWP
package. The Product Specification (PS) [2] provides information on the purpose, outputs, inputs,
system requirements and functionality of the PenWP software. Reading the UM and the PS should
provide sufficient information to the user who wants to apply the PenWP program as a black box.
This TLD document is of interest to developers and users who need more specific information on
how the processing is done.

PenWP can be obtained through the NWP SAF website at https://nwp-saf.eumetsat.int/. Please note
that any questions or problems regarding the installation or use of PenWP can be addressed at the
OSI SAF helpdesk at https://osi-saf.eumetsat.int/.

1.1 User requirements

According to the NWP SAF Development Procedures for Software Deliverables [3], user
requirements must be subject to review before the start of development, to ensure planned
developments are relevant and respond to user requirements. The development of PenWP was
motivated by the OSI SAF requirement to have a processor capable of processing pencil beam
scatterometer level 1 data into wind products. The output wind products need to fulfil the
requirements specified in the OSI SAF Product Requirements Document in terms of product quality
and timeliness. These requirements are the basis for PenWP development and they are detailed in
the traceability matrix in the PenWP Test Plan and Test Report [4].

1.2 Conventions

Names of physical quantities (e.g., wind speed components u and v), modules (e.g. bufrio_module),
subroutines and identifiers are printed italic.

Names of directories and subdirectories (e.g. penwp/src), files (e.g. penwp.F90), and
commands (e.g. penwp -f input) are printed in Courier. Software systems in general are
addressed using the normal font (e.g. PenWP, genscat).

Hyperlinks are printed in blue and underlined (e.g. https://scatterometer.knmi.nl/).

https://nwp-saf.eumetsat.int/
https://osi-saf.eumetsat.int/
https://scatterometer.knmi.nl/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

2 Program Design

In this chapter, the design of the PenWP software package is described in detail. Readers to whom
only a summary will suffice are referred to the Top Level Design (TLD) in section 2.1. Readers who
really want to know the very detail should not only read the complete chapter, but also the
documentation within the code.

2.1 Top Level Design

2.1.1 Main program

The main program, PenWP, (file penwp in the penwp/ src directory) is a Unix (Linux) executable
which processes pencil beam Ku-band BUFR input files. The main output consists of BUFR files.
The output BUFR messages are in the NOAA BUFR format or in the KNMI BUFR format with
generic wind section, for a list of descriptors see Appendix A in the Product Specification [2]. The
user may provide arguments and parameters according to Unix command line standards. The
purpose of the different options is described in the User Manual [1].

When executed, the PenWP program logs information on the standard output. The detail of this
information may be set with the verbosity flag. The baseline of processing is described in Figure
2.1, but note that not all of these steps are always invoked. Some of them will be skipped, depending
on the command line options. A more detailed representation of the PenWP structure is given in
Appendices A and B.

The first step is to process the arguments given at the command line using the genscat
Compiler Features module. Next, the PenWP program reads the input file specified in the
arguments. The BUFR messages are read and mapped onto the PenWP data structure, see subsection
2.1.3. As part of the pre-processing some checks on the input data are done, the atmospheric
attenuations are computed and ¢ calibration is performed when applicable. Then, the NWP GRIB
data (wind forecasts, land-sea mask and sea surface temperature) are read and the data are collocated
with the Wind Vector Cells. The next steps are the inversion and the ambiguity removal. The
program ends with the post-processing step (which includes some conversions and the monitoring)
and the mapping of the output data structure onto BUFR messages of the BUFR output file. The
different stages in the processing correspond directly to specific modules of the code. These modules
form the process layer, see section 2.3.

OSI SAF

PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001

0 4.0.02
: August 2022

Process arguments

A

y

Read in

put data

A

y

Pre-pro

cessing

A

y

Read/collocate GRIB data

A

y

Inversion

A

A

Ice screening

A

4

Ambiguity Removal

A
Post-processing

v
Write BUFR output

Figure 2.1 Baseline of the Pencil Beam Wind Processor

2.1.2 Layered model structure

PenWP is a Fortran 90 software package consisting of several Fortran 90 modules which are linked
after their individual compilation. The PenWP software is set up from two layers of software
modules. The purpose of the layer structure is to divide the code into generic scatterometer
processing software and Ku-band pencil beam specific software. Details on the individual modules
can be found in sections 2.2 and 2.3.

The first layer (the process layer) consists of modules which serve the main steps of the process.

Module name Tasks Comments
penwp_data Definition of data structures
penwp_bufr BUFR file handling Interface to genscat BUFR support module
penwp_prepost Quality control Usability of input data is determined
Atmospheric attenuation
Post processing Setting of flags
Monitoring
Clean up De-allocation of used memory

Backscatter calibration
GRIB file handling
Collocation of GRIB data
Inversion

penwp_calibrate
penwp_grib Interface to genscat GRIB support module
NWP data are interpolated w.r.t. time and location

penwp_inversion Interface to genscat inversion module

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Module name Tasks Comments
penwp_ambrem Ambiguity Removal Interface to genscat Ambrem module
penwp _icemodel Ice screening Interface to genscat IceModel module

Table 2.1 PenWP process modules.

Each module contains code for performing one or more of the specific tasks. These tasks are briefly
described in table 2.1. A more elaborate description is given in section 2.3. The first module listed,
penwp_data is a general support module. This module is used by the other modules of the process
layer for the inclusion of definitions of the data structures and the support routines.

The second module layer is the genscat layer. The genscat module classes (i.e., groups of modules)
used in the PenWP package are listed in table 2.2. The genscat package is a set of generic modules
which can be used to assemble processors as well as pre-processing and post-processing tools for
different scatterometer instruments available to the user community. A short description of the main
(interface) modules is given in section 2.2. The most important classes of modules are related to the
inversion processing step (section 3), the Ambiguity Removal step (section 4), the BUFR file
handling (section 6), and the GRIB file handling (section 7). The genscat modules are located in
subdirectory genscat.

In addition, genscat contains a large support class to convert and transform meteorological,
geographical, and time data, to handle file access and error messages, sorting, and to perform more
complex numerical calculations on minimization and Fourier transformation. Many routines are co-
developed for ERS, ASCAT and SeaWinds data processing.

Module class Tasks Description
Ambrem Ambiguity Removal ~ 2DVAR and other schemes, see section 4
Inversion Wind retrieval Inversion in one cell, see section 3
IceModel Ice screening Uses ice line and wind cone for ice discrimination
Support BUFR support bufrio_module, based on ECMWF ecCodes library
HDFS5 support Reading of HDFS5 files, based on HDFGROUP
HDFS5 library
GRIB support gribio_module, based on ECMWF ecCodes library
FFT, minimization Support for 2DVAR
Error handling Print error messages
File handling Finding, opening and closing free file units
Conversion Conversion of meteorological quantities
Sorting Sorting of ambiguities to their probability
Date and time General purpose

Table 2.2 genscat module classes.

2.1.3 Data Structure

Along track, the scatterometer swath is divided into rows. Within a row (across track), the orbit is
divided into cells, also called Wind Vector Cells (WVCs) or nodes. This division in rows and cells
forms the basis of the main data structures within the PenWP package. In fact, both the input and
the output structure are one dimensional arrays of the row data structure, row_type. These arrays
represent just a part of the swath. Reading and writing (decoding and encoding) data files
corresponds to the mapping of a BUFR message to one or more instances of the row_#ype and vice

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
versa.

The main constituent of the row fype is the cell data structure, cell type, see figure 2.2. Since most
of the processing is done on a cell-by-cell basis the cell type is the pivot data structure of the
processor.

row_type

cell_type

beam_type

ambiguity_type

Figure 2.2 Schematic representation of the nested data definitions in the row_type data structure.

The ¢° related level 1b data of a cell are stored in a data structure called beam_type. Every cell
contains four instances of the beam_type, corresponding to the inner fore, outer fore, inner aft, and
outer aft beams.

A cell may also contain an array of instances of the ambiguity type data structure. This array stores
the results of a successful wind retrieval step, the wind ambiguities (level 2 data). Details of all the
data structures and methods working on them are described in the next sections.

2.14 Quality flagging and error handling

Important aspects of the data processing are to check the validity of the data and to check the data
quality. In the Pen WP software two flags are set for every WVC, see table 2.3. The flags themselves
do not address a single aspect of the data, but the flags are composed of several bits each addressing
a specific aspect of the data. A bit is set to 0 (1) in case the data is valid (not valid) with respect to
the corresponding aspect. In order to enhance the readability of the code, each flag is translated to a
data type consisting of only booleans (false = valid, true = invalid). On input and output these data
types are converted to integer values by set and gef routines.

Flag Tasks Description
wvc_quality Quality checking In BUFR output
process flag Range checking Not in BUFR output

Table 2.3 Flags for every WVC (attributes of cell type).

Apart from the flags on WVC level, also the beams contain quality indicators. See section 2.3.1 for
more information on this.

2.1.5 Verbosity

Every routine in a module may produce some data and statements for the log of the processor. To
control the size the log, several modules contain parameters for the level of verbosity. The verbosity
of the PenWP program may be controlled by the verbosity command line option -verbosity. In

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

general, there are three levels of verbosity specified:
<-1: Dbe as quiet as possible;

0: only report top level processing information;
>1: report additional information.

Of course, errors are logged in any case. Table 2.4 gives a (incomplete) list of verbosity parameters.
They are not all set by the command line option as some of them serve testing and debugging
purposes.

Module Verbosity parameter
Ambrem2Dvar TDVverbosity
AmbremBGclosest BGverbosity
BatchMod BatchVerbosity
Ambrem AmbremVerbosity
penwp_bufr BufiVerbosity
penwp_hdf5 hdf5 verbosity
penwp_grib GribVerbosity
penwp_icemodel dbgLevel

Table 2.4 Verbosity parameters.

2.2 Module design for genscat layer

2.2.1 Module inversion

The module inversion contains the genscat inversion code. Module post inversion contains some
routines for probability computations. The modules are located in subdirectory
genscat/inversion. Details of this module are described in section 3. In the PenWP software
package, the inversion module is only used in the penwp_inversion module, see section 2.3.6.

2.2.2 Module ambrem

The module ambrem is the main module of the genscat Ambiguity Removal code. It is located in
subdirectory genscat/ambrem. Details of this module are described in 4. In the PenWP software
package, the ambrem module is only used in the penwp ambrem module, see section 2.3.7.

2.2.3 Module icemodel

The module icemodel contains the genscat ice screening code. It is located in subdirectory
genscat/icemodel. In the PenWP software package, the icemodel module is only used in the
penwp_icemodel module, see section 2.3.8.

2.2.4 Module bufirio_module

Genscat contains several support modules. In particular, the bufrio_module module is the Fortran 90
wrapper around the ecCodes library used for BUFR input and output. It is located in subdirectory
genscat/support/eccodes. Details of this module are described in setion 6. In the PenWP
software package, the bufrio_module module is used in the penwp bufr module, see subsection 2.3.2
and in the conversion programs in directories penwp/seawinds, penwp/oscat and

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

penwp/hscat, see subsection 2.3.10.

2.2.5 Module gribio_module

The gribio module module is the Fortran 90 wrapper around the ecCodes library used for GRIB
input and collocation of the NWP data with the scatterometer data. It is located in subdirectory
genscat/support/eccodes. Details of this module are described in section 7. In the PenWP
software package, the gribio_module module is used in the penwp grib module, see subsection
2.3.5.

2.2.6 Module HDF5Mod

The HDF5Mod module is the Fortran 90 wrapper around the HDF5 library from the HDF Group,
used for HDF5 input. It is located in subdirectory genscat/support/hdf5. In the PenWP
software package, the HDF5Mod module is only used in the conversion programs in directories
penwp/seawinds, penwp/oscat and penwp/hscat, see subsection 2.3.10.

2.2.7 Support modules

Subdirectory genscat/support contains more support modules besides bufirio module,
gribio_module and HDF5Mod. The KNMI 2DVAR Ambiguity Removal method requires
minimization of a cost function and numerical Fourier transformation. These routines are located in
subdirectories BFGS and singletonfft, respectively, and are discussed in more detail in section
4.4.

Subdirectory Compiler Features contains module Compiler Features for handling some
compiler specific issues, mainly with respect to command line argument handling. The Makefile
in this directory compiles on of the available source files, depending on the Fortran compiler used.

Subdirectory convert contains module convert for the conversion of meteorological and
geographical quantities, e.g. the conversion of wind speed and direction into u and v components
and vice versa. It also contains routines for spherical trigonometric calculations used to generate the
2DVAR grid, like angular distance along a great circle and determination of the initial course from
one point on a great circle to another.

Subdirectory datetime contains module DateTimeMod for date and time conversions. Pen WP
only uses routines GetElapsedSystemTime (for calculating the running time of the various processing
steps), and DayJulian and ymd2julian (for conversion between Julian day number and day, month
and year). Module DateTimeMod needs modules ErrorHandler and numerics.

Subdirectory ErrorHandler contains module ErrorHandler for error management. This module
is needed by module DateTimeMod.

Subdirectory £ i1e contains module LunManager for finding, opening and closing free logical units
in Fortran. PenWP uses only routines get /un and firee lun for opening and closing of a logical unit,
respectively.

Subdirectory num contains module numerics for defining data types and handling missing values,
for instance in the BUFR library. This module is needed by many other modules.

Subdirectory sort, finally, contains module SortMod for sorting the wind vector solutions
according to their probability. This module is needed by modules inversion and post_inversion.

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

23 Module design for process layer

The process layer consists of the modules penwp data, penwp bufr, penwp prepost,
penwp_calibrate, penwp grib, penwp inversion, penwp icemodel and penwp ambrem. The
routines present in these modules are described in the next sections.

2.3.1 Module penwp_data

The module penwp data contains all the important data types relevant for the processing.
Elementary data types are introduced for the most basic data structures of the processing. These are
e.g. wind_type and time type. Using these data types (and of course the standard types as integer,
real etc.), more complex (composed) data types are derived. Examples are beam type,
ambiguity type, cell type, and row_type. A complete description of all types is given below. The
attributes of all these types have intentionally self-documenting names. To enhance the readability
and understanding of the data structures and their relations, two simple UML Class Diagrams were
created, they can be found in Appendix D.

Ambiguity data: The ambiguity type data type contains information on an individual ambiguity
(wind vector solution). The attributes are listed in table 2.5. The routine init_ambiguity() sets all
ambiguity data to missing. The routine print_ambiguity() may be used to print all ambiguity data.

Attribute Type Description

wind wind_type Wind vector solution

error_speed real Uncertainty in wind speed, not used in Pen WP
error_dir real Uncertainty in wind direction, not used in PenWP
prob real Probability of wind vector solution

conedistance real Distance of solution to the GMF

Table 2.5 Ambiguity data structure.

Beam data: Every WVC contains four beams. The information of every beam is stored in the data
type beam_type. The attributes are listed in table 2.6. The routine init_beam() sets all beam data to
missing and the routine test_beam checks if the data in the beam are within valid ranges. The routine
print_beam() may be used to print all beam data.

Attribute Type Description

sum_weights real Sum of weights, used in averaging of level 2a slices
num integer Presence of backscatter data, 0 or 1

k_polar integer Beam polarisation, 0 = HH pol, 1 = VV pol

lat real Beam latitude

lon real Beam longitude

atten_value real Two-way nadir atmospheric attenuation

azimuth real Radar look angle (degrees, counted clockwise from the North)
incidence real Incidence angle (degrees, O is vertical, 90 is horizontal)
sigma0 real Radar backscatter (¢°) in dB

snr real Signal to noise ratio

kp_a real Noise value Kp a as fraction of 1

kp b real Noise value Kp B as fraction of 1

kp ¢ real Noise value Kp y in dB

s0 _variance qc real o variance quality control, not used in PenWP

10

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02

Date : August 2022
Attribute Type Description
s0_quality s0_quality type Flag related to the quality of the backscatter information
s0_mode s0_mode_type Information about beam type
s0_surface s0_surface _type Information about land or ice presence
sigmal corr real Correction factor from NOC or other calibrations

Table 2.6 Beam data structure.

Brightness temperature data: The btemp type data type contains information on brightness
temperatures. Every WVC contains two brightness temperatures, for the vertically and horizontally
polarized beams. The attributes are listed in table 2.7. The routine init_btemp() sets all brightness
temperature data to missing.

Attribute Type Description

k_polar integer Beam polarisation, 0 = HH pol, 1 = VV pol
tot_num integer Number of slices used in averaging

bright temp real Brightness temperature in K

bright temp sd real Standard deviation of brightness temperature

Table 2.7 Brightness temperature data structure.

Cell Data: The cell type data type is a key data type in the PenWP software, because many
processing steps are done on a cell by cell basis. The attributes are listed in table 2.8. The routine
init_cell() sets the cell data to missing values. Also the flags are set to missing. The routine fest_cell()
tests the validity of data. This routine sets the cell process flag. The routine print_cell() may be used
to print the cell data.

Attribute Type Description

centre_id integer Identification of originating/generating centre
sub_centre_id integer Identification of originating/generating sub-centre
software_id 11b integer Software identification of level 1 processor
satellite id integer Satellite identifier

sat_instruments integer Satellite instrument identifier

sat_instr_short integer Instrument short name, code table 02048

gmf id integer Identifier of GMF used, code table 21119
sat_motion real Direction of motion of satellite

time time_type Date and time of data acquisition

lat real Latitude of WVC

lon real Longitude of WVC

time_to_edge integer Time to beginning or end of data file (s)
time_diff qual integer Time difference qualifier, code table 08025
pixel_size_hor real Distance between WV Cs (meters)

orbit_nr integer Orbit number

row_nr integer Along track row number

node_nr integer Across track cell number

s0_in_cell integer Number of beams containing data in cell
rain_prob real Probability of rain, not used in PenWP
rain_nof real Rain normalised objective function, not used in Pen WP
rain_rate real Rain rate, not used in Pen WP
rain_attenuation real Attenuation due to rain, not used in Pen WP
btemp (2) btemp_type Brightness temperature data

11

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02

Date : August 2022
Attribute Type Description
beam (4) beam type Beam data
software _id wind integer Software identification of level 2 wind processor
generating_app integer Generating application of model information
model_wind wind_type Model wind used for Ambiguity Removal
ice_prob real Probability of ice
ice_age real Ice age A-parameter
wve_quality wve_quality type WVC quality flag
num_ambigs integer Number of ambiguities present in WVC
num_ambigs n integer Number of non-MSS ambiguities
selection integer Index of selected wind vector
ambig (0..144) ambiguity type Array of wind ambiguities
ice ice_type Ice information

stress_param
process_flag
conedist_avg
joss

nwp_stress _param_type

process_flag type
real

real

Wind stress information
Processing flag

Spatially averaged conedistance
Joss value

Table 2.8 Cell data structure.

Ice model data: The ice fype contains information related to the ice screening. The attributes are
listed in table 2.9. The routine init_icemodel() sets the ice model data to missing values. The routine
print_icemodel() may be used to print the ice data.

Attribute Type Description

class integer Code for WVC being ice or wind
ii integer Coordinate on the ice map

¥ integer Coordinate on the ice map

a real Ice coordinate

b real Ice coordinate

c real Ice coordinate

d real Ice coordinate

dlce real Distance to the ice line

sst real Sea surface temperature
wind_sol real Wind solution used in ice screening algorithm

Table 2.9 Ice model data structure.

NWP stress parameter data: The nwp_stress_param_type data type contains information relevant
for wind stress calculations (stress calculation is not implemented in PenWP). The attributes are
listed in table 2.10. The routine init nwp_stress_param() sets the NWP stress parameter data to

missing values. The routine print nwp_stress_param () may be used to print the stress data.

Attribute Type Description

u real Eastward (zonal) wind component

v real Northward (meridional) wind component
t real Air temperature

q real Specific humidity

sst real Sea surface temperature

chnk real Charnok parameter

sp real Surface pressure

12

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Table 2.10 NWP stress parameter data structure.

Row data: The data of a complete row of the swath is stored in the data type row type, see table
2.11. A complete row corresponds to a single BUFR message in the PenWP output.

Attribute Type Description
num_cells integer Actual number of WVC’s in this row
cell(152) cell type Array of Wind Vector Cells

Table 2.11 Row data structure.

Time data: The time_type data type contains a set of 6 integers representing both the date and the
time, see table 2.12. The routine init_time() sets the time entries to missing values. The routine
test_time() tests the validity of the date and time specification (see also the cell process flag). The
routine print_time() can be used to print the time information.

Attribute Type Description

year integer 19XX or 20XX
month integer 1-12
day integer 1-31
hour integer 0-23
minute integer 0—59
second integer 0—59

Table 2.12 Time data structure.

Wind Data: The wind type data type contains the wind speed and wind direction, see table 2.13.
The routine init wind() sets the wind vector to missing. The routine print wind() may be used to
print the wind vector. The routine test wind() tests the validity of the wind specification, see also
the cell process flag.

Attribute Type Description
speed real Wind speed
dir real Wind direction

Table 2.13 Wind data structure.

Some special data types are introduced for the data (quality) flags. These are discussed below.

Sigma0 quality flag: The sO_quality type data type contains the flag indicating the quality of the
0. Each of the four beams in a WVC contains an instance of this flag. The attributes are listed in
table 2.14. The function get s0_quality() converts an integer value to the logical flag structure. The
function set_s0 _quality() converts a logical flag structure to an integer value. Note that only a few
bits of this flag are used in PenWP.

Attribute Bit 2Bt Description
missing Flag not set (all bits on)

13

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Attribute Bit 2Bit Description
usability 15 32768 o measurement not usable
noise_ratio 14 16384 Low signal to noise ratio
negative 13 8192 Y is negative
range 12 4096 ¢ is outside acceptable range
pulse 11 2048 Pulse quality not acceptable
convergence 10 1024 Location algorithm does not converge
freq shift 9 512 Frequency shift beyond range
temperature 8 256 Spacecraft temperature beyond range
attitude 7 128 No applicable attitude records
ephemeris 6 64 Interpolated ephemeris data

Table 2.14 SigmaO quality flag bits (Fortran).

Sigma0 mode flag: The s0 mode type data type contains the flag indicating the properties of the
o measurement. Each of the four beams in a WVC contains an instance of this flag. The attributes
are listed in table 2.15. The function get s0_mode() converts an integer value (BUFR input) to the
logical flag structure. The function set_s0_mode() converts a logical flag to an integer value.

Attribute Bit 2Bt Description

missing Flag not set (all bits on)

outer 13 8192 ¢is of outer beam

aft 12 4096 ¢ is aft of satellite

low res 6 64 Egg data used rather than slice data

Table 2.15 Sigma0 mode flag bits (Fortran).

Sigma0 surface flag: The s0_surface type data type contains the flag indicating land or ice presence
in the ¢° measurement. Each of the four beams in a WVC contains an instance of this flag. The
attributes are listed in table 2.16. The function get s0 surface() converts an integer value (BUFR
input) to the logical flag structure. The function set_s0 surface() converts a logical flag to an integer
value.

Attribute Bit 2Bt Description

missing Flag not set (all bits on)

land 15 32768 Land is present

ice 14 16384 Ice is present

ice_map 5 32 Ice map data not available
atten_map 4 16 Attenuation map data not available

Table 2.16 SigmaO surface flag bits (Fortran).

Wind Vector Cell quality flag: Every WVC contains a flag for its quality. Therefore the cell type
contains an instance of the wve_quality type. Table 2.17 gives an overview of its attributes. The
implementation of this flag is different in the NOAA BUFR format and the KNMI BUFR format
with generic wind section. The functions get wvc quality noaa() and get wvc quality gen()
interpret an integer flag (BUFR input) to an instance of wvc_quality type. The functions
get wve_quality noaa() and get wve_quality gen() transform an instance of wvc_quality type to
an integer flag. The routine print_wvc_quality() may be used to print the bit values of the flag.

14

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design Version : 4.0.02
Date : August 2022
Attribute Bit 28it Bit 2Bt Description
NOAA NOAA KNMI KNMI
missing Flag not set (all bits on)
qual_sigma0 15 32768 22 4194304 Not enough good ¢° available for wind
retrieval
azimuth 14 16384 21 2097152 Poor azimuth diversity among ¢°
kp 20 1048576 Any beam noise content above threshold
monflag 12 4096 19 524288 Product monitoring not used
monvalue 11 2048 18 262144 Product monitoring flag
knmi_qc 10 1024 17 131072 KNMI quality control data rejection
var_qc 9 512 16 65536 Variational quality control data rejection
land 8 256 15 32768 Some portion of wind vector cell is over land
ice 7 128 14 16384 Some portion of wind vector cell is over ice
inversion 6 64 13 8192 Wind inversion not successful
large 5 32 12 4096 Reported wind speed is greater than 30 m/s
small 4 16 11 2048 Reported wind speed is less than or equal to 3
m/s
nowcasting_qc 3 8 10 1024 Quality control data rejection for visualisation
and nowcasting
rain_detect 2 4 9 512 Rain detected
no_background 8 256 No meteorological background used
redundant 7 128 Data are redundant
gmf distance 6 64 Distance to GMF too large
four beam 1 2 5 32 One of the four beams is missing
morethan_2 vv 13 8192 4 16 VV polarised beam data in more than two

beams

Table 2.17 Wind Vector Cell quality flag bits (Fortran).

Cell process flag: Besides a cell quality flag, every WVC contains a process flag. The process flag
checks on aspects that are important for a proper processing, but are not available as a check in the
cell quality flag. The cell process flag is set by the routine test_cell, which calls routines test time,

test_beam and test_wind.

Table 2.18 lists the attributes of the process_flag type. The process flag is only available internally
in PenWP. The routine print_process flag() may be used to print the bit values of the flag.

Attribute

Description

satellite id
sat_instruments
sat_motion
time

latlon
pixel_size_hor
node_nr

beam (4)

model wind

Invalid satellite id

Invalid satellite instrument id
Invalid satellite direction of motion
Invalid date or time specification
Invalid latitude or longitude
Invalid cell spacing

Invalid across track cell number
Invalid data in one of the beams
Invalid background wind

15

DocID : NWPSAF-KN-DS-001

selection

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Attribute Description
ambiguity Invalid ambiguities

Invalid wind selection

Table 2.18 Cell process flag bits (Fortran).

Table 2.19 provides an overview of all routines and their calls in module penwp_data.

Routine Call Description

compute_cell latlon merge_rows Average beam lat/lon positions to WVC lat/lon position
compute_flight dir preprocess Compute satellite flight direction

copy_cell Copy all information from one cell into another
get_s0_mode init_beam Convert integer ¢° mode flag to logical structure
get_s0_quality init_beam Convert integer ¢° quality flag to logical structure
get_s0_surface init_beam Convert integer ¢ surface flag to logical structure
get_wvc_quality gen init_cell Convert integer WVC quality (generic) to logical structure
get wvc_quality noaa Convert integer WVC quality (KNMI) to logical structure
init_ambiguity Initialise ambiguity structure

init_beam init_cell Initialise beam structure

init_btemp init_cell Initialise brightness temperature structure

init_cell Initialise cell structure

init_ice init_cell Initialise ice information structure
init_nwp_stress_param init_cell Initialise NWP stress parameters structure
init_process_flag init_cell Initialise process flag structure

init_time init_cell Initialise time structure

init_wind init_cell Initialise wind structure

print_ambiguity Print ambiguity structure

print_beam Print beam structure

print_cell Print cell structure

print_ice Print ice information structure

print_nwp_stress_param

print_process_flag
print_s0_mode
print_s0_quality
print_s0_surface
print_time
print_wind
print_wvc_quality
read_lut_from_file

set_knmi_flag
set_s0_mode
set_sO0_quality
set_s0_surface
set_wvc_quality _gen
set_wve_quality _noaa
test_beam

test_cell

test time

test wind

init_inversion
remove_ambiguities

test_cell

test_cell
test cell

Print NWP stress parameters structure
Print process flag structure

Print ¢° mode flag structure

Print ¢° quality flag structure

Print ¢ ° surface flag structure

Print time structure

Print wind structure

Print quality flag structure

Read ASCII look-up table from file

Sets/unsets KNMI QC flag depending on other flag settings
Convert logical 6° mode flag to integer

Convert logical ¢° quality flag to integer

Convert logical ¢ surface flag to integer

Convert logical WVC quality to integer (generic)

Convert logical WVC quality to integer (NOAA)

Test validity of beam data

Test validity of cell data

Test validity of time data

Test validity of wind data

Table 2.19 Routines in module penwp data

16

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

2.3.2 Module penwp bufr

The module penwp_bufr maps the PenWP data structure on BUFR messages and vice versa. The
penwp_bufr module uses the genscat module bufrio_module, see subsection 2.2.4 for the interface
with the BUFR routine library.

Table 2.20 provides an overview of the different routines and their calls in this module.

Routine Call Description
bufr _to_row data_gen read_bufr file KNMI format BUFR message into one row_type
bufr to row data noaa read bufr file NOAA format BUFR message into one row_type

init_bufr processing read_bufr file, Initialise module
write_bufr_file
read_bufr file PenWP Read a complete BUFR file into row_types

row_to_bufr data_gen write_bufr _file PenWP row_type into KNMI format BUFR message
row_to_bufr data noaa write_bufr filer PenWP row_type into NOAA format BUFR message
write_bufr_file PenWP Write all row_types into a complete BUFR file
write_data row to bufir write _bufr file. Write one row_ type into a BUFR file

Table 2.20 Routines in module penwp_bufr
Note that the BUFR messages always contain exactly one data row.

2.3.3 Module penwp prepost

Module penwp_prepost contains the routines to do all the pre-processing and post-processing. Pre-
processing consists of the procedures between the reading of the BUFR input and the wind retrieval
for the output product. This includes completion of missing information, and assessments of the
quality of the input data. Post processing consists of the procedure between the ambiguity removal
step and the BUFR encoding of the output. The post processing includes the monitoring of the wind
data and the setting of some of the flags in the output product.

Routine Call Description

atm_attenuation preprocess Compute climatological atmospheric attenuations

get_orbit_numbers preprocess Compute orbit number for OSCAT data

merge_rows sort_and_merge Merge cells of duplicate data rows

monitoring postprocess Monitoring

postprocess PenWP Main routine of the post processing

preprocess PenWP Main routine of the pre processing

process_cleanup PenWP Memory management

sort_and_merge preprocess Sort data rows and merge row information of
duplicate rows

write_binary output postprocess Write WVC data to a binary output file

write_properties postprocess Write some properties of the data into a text file

Table 2.21 Routines of module penwp prepost.

Table 2.21 lists the tasks of the individual routines. PenWP calls preprocess() to compute
information not present in the level 2a data, like satellite motion direction, time to edge, and
atmospheric attenuation. When the input data contain overlapping (duplicate) data rows, the
information of these rows in merged in an optimal way, i.e., beam data available in a WVC in one

17

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

row is used to complete missing beam data in the corresponding WVC of the other row. The
wve_quality flag is initialised and the /and and ice flags in wvc_quality are set according to the
settings of the corresponding flags in the beam s0_surface flags.

The monitoring, which is performed as part of the post-processing, calculates some statistics from
the wind product and writes them to an ASCII file with the same name as the BUFR output file and
extension .mon. The monitoring parameters are listed in table 2.22. They are calculated separately
for five different regions (WVC ranges) of the swath. Note that the monitoring is invoked only if
the -mon command line option is set.

Parameter Description

observation Number of Wind Vector Cells in output = N/

land Fraction of WVCs with land flag set

ice Fraction of WVCs with ice flag set

background Fraction of WVCs containing model winds

backscatter_info Fraction of WVCs containing sufficient valid 6°’s for inversion =N2
knmi_flag Ratio number of WVCs with KNMI QC flag set / N2
wind_retrieval Fraction of N2 that actually contains wind solutions = N3
wind_selection Fraction of N3 that actually contains a wind selection = N4

big mle Number of WVCs containing a wind solution but no MLE value
avg _mle Averaged (over N4) MLE value of 1% wind selection

var_qc Fraction of N4 that has the Variational QC flag set

rank 1 skill Fraction of N4 where the first wind solution is the chosen one

avg wspd_diff Averaged (over N4) difference between observed and model wind speeds
rms_diff wspd RMS (over N4) difference between observed and model wind speeds

wspd_ge 4 Fraction of N4 where the selected wind speed is >4 m/s = N5

rms_diff dir RMS (over NJ) difference between observed and model wind directions

rms_diff u RMS (over NJ) difference between observed and model wind # components
rms_diff v RMS (over NJ) difference between observed and model wind v components
rms_diff vec_len ~ RMS (over N5) vector length between observed and model winds

ambiguity Fraction of N5 where the chosen solution is nof the one closest to the model wind

Table 2.22 Parameters in monitoring output.

2.34 Module penwp_calibrate

The module penwp_calibrate performs the calibration of the ¢°’s in routine calibrate s(0. Based on
the results of instrument Ocean Calibration, a bias is added to the backscatter values. The
coefficients are obtained specifically for each instrument. Note that the calibration is done again in
the reverse order after the post processing in order to write the ¢”’s to output as plain copies of the
input ¢%’s. More information about the calibration can be found in [5].

Routine Call Description
calibrate s0 PenWP Perform forward or backward backscatter calibration

Table 2.23 Routines in module penwp_calibrate

2.3.5 Module penwp _grib

The module penwp grib reads in ECMWF GRIB files and collocates the model data with the
scatterometer measurements. The penwp grib module uses the genscat module gribio module, see

18

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

subsection 2.2.5 for the interface with the GRIB routine library.

Table 2.24 provides an overview of the routines and their calls in this module. The genscat support
routines uv_to speed() and uv_to dir() are used to convert NWP wind components into wind speed
and direction.

Routine Call Description

get grib_data PenWP Get land mask, ice mask and background winds using GRIB data
init grib processing get grib data Initialise module

Table 2.24 Routines in module penwp_grib

NWP model sea surface temperature and land-sea mask data are used to provide information about
possible ice or land presence in the WVCs. WVCs with a sea surface temperature below 272.16 K
(-1.0 °C) are assumed to be covered with ice and the ice and qual sigma0 flags in wvc_quality are
set, as well as the ice flags in the s0 _surface for each beam. Note that the sea surface temperature
screening step is omitted if the ice screening is used; see section 2.3.8. In this case, sea surface
temperature information from GRIB will still be used if it is present to support the ice screening.
When the sea surface temperature is above 278.15 K (+5.0 °C), the WVC will be assumed to contain
no ice.

Land presence within each WVC is determined using the land-sea mask available from the model
data. The weighted mean value of the land fractions of all model grid points within 80 km of the
WYVC centre is calculated and if this mean value exceeds a threshold of 0.02, the qual sigma0 flag
in wve_quality is set, as well as the land flags in the sO surface for each beam. The land flag in
wve_quality is set if the calculated land fraction is above zero.

NWP forecast wind data are necessary in the ambiguity removal step of the processing. Wind
forecasts with forecast time steps of +3h, +6h, ..., +36h can be read in. The model wind data are
cubically interpolated with respect to time linearly interpolated with respect to location and put into
the model _wind part of each WVC.

2.3.6 Module penwp_inversion

Module penwp_inversion serves the inversion step in the wind retrieval. The inversion step is done
cell by cell. The actual inversion algorithm is implemented in the genscat modules inversion and
post_inversion, see subsection 2.2.1. Table 2.25 provides an overview of the routines and their calls
in this module.

Routine Call Description

init_inversion invert wvcs Initialisation

invert_node invert wves Call to the genscat inversion routines
invert wvcs PenWP Loop over all WVCs and perform inversion

Table 2.25 Routines of module awpd_inversion.

19

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

OSI SAF PenWP Top Level Design

2.3.7 Module penwp _ambrem

Module penwp ambrem controls the ambiguity removal step of the PenWP software. The actual
ambiguity removal schemes are implemented in the genscat module ambrem, see section 2.2.2. The
default method is the KNMI 2DV AR scheme. Table 2.26 lists the tasks of the individual routines.

Routine Call Description

fill batch remove_ambiguities Fill a batch with observations
remove_ambiguities ~ PenWP Main routine of ambiguity removal
select wind remove_ambiguities Final wind selection

Table 2.26 Routines of module awpd ambrem.

The ambiguity removal scheme works on a so-called batch. The batch is defined in the fill batch()
routine. For PenWP a batch is just a set of rows. The size of the batch is determined by the resolution
of the structure functions and the optimal dimensions for FFT. The routine remove ambiguities()
performs the actual ambiguity removal. Finally select wind() passes the selection to the output
WVCs.

2.3.8 Module penwp_icemodel

Module penwp_icemodel performs the ice screening of the wind product. The ice screening works
on the principle that WVCs over water yield wind solutions which are close to the GMF (‘cone’). If
a WVC is over ice, the ¢° quadruplets from the four beams will be close to the so-called ice line.
Hence, there is a possibility to discriminate between water (wind) and ice WVCs. The
implementation of this principle is described in more detail in [6]. The ice screening is done before
the ambiguity removal step. Table 2.27 provides an overview of the routines and their calls in this

update ice pixel

scat 2 ice map

module.
Routine Call Description
calc_aAve ice_model Calculate space-time averaged values of ice parameter a
calc_aSd ice_model Calculate the standard deviation of ice parameter a
calc_ice_coord scat 2 ice_map Calculate ice coordinates and distance to ice line
calc_plceGivenX ice_model Calculate the ice a posteriori probability
calc_SubClass ice_model Calculate the subclass of a pixel on the ice map
get class update ice pixel Calculate the ice type of a pixel on the ice map
get_px update ice pixel Get the probability of ice
ice_map 2 scat ice_model Update cell data structure with information in ice map
ice_model PenWP Main routine of ice screening
scat 2 _ice _map ice_model Update the ice map with the information in cell data
smooth ice_model Smooth the ice map

Update various elements of a pixel on the ice map

2.3.9

Table 2.27 Routines of module penwp icemodel.

Module penwp

Module penwp is the main program of PenWP. It processes the command line options and controls
the flow of the wind processing by calling the subroutines performing the subsequent processing
steps. If any process step returns with an error code, the processing will be terminated.

20

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

2.3.10 HDF to BUFR conversion tools

The SeaWinds/RapidScat, OSCAT and HSCAT HDF files all have a different structure. Therefore,
six programs for the conversion of HDF5 to BUFR are delivered with PenWP:
seawinds hdfZbufr, seawinds 1llb bufr, oscat hdfZbufr, oscat 11b bufr,
hscat hdf2bufr and hscat 11b bufr. All these programs consist of an independent
Fortran 90 module with calls to routines in modules penwp data, penwp_bufr and penwp prepost.
Moreover, several modules in genscat are called. The conversion programs map the datasets in a
HDFS5 file on the PenWP data structure, which is subsequently written to a BUFR output file. The
‘hdf2buftr’ tools are intended for level 2a and level 2b input files whereas the ‘11b_buft’tools are
intended for level 1b input files.

21

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

3 Inversion module

3.1 Background

In the inversion step of the wind retrieval, the radar backscatter observations in terms of the
normalized radar cross-sections (¢”'s) are converted into a set of ambiguous wind vector solutions.
In fact, a Geophysical Model Function (GMF) is used to map a wind vector (specified in terms of
wind speed and wind direction) to the ¢° values. The GMF further depends not only on wind speed
and wind direction, but also on the measurement geometry (relative azimuth and incidence angle),
and beam parameters (frequency, polarisation). A maximum likelihood estimator (MLE) is used to
select a set of wind vector solutions that optimally match the observed ¢”s. The wind vector
solutions correspond to local minima of the MLE function

v

MLE = ii (O-(())bs (l) " O-é.);MF (l)) (3.1)

N3 K, (@)

With N the number of independent 6° measurements available within the wind vector cell, and K,

the covariance of the measurement error. This selection depends on the number of independent ¢°

values available within the wind vector cell. The MLE can be regarded upon as the distance between

an actual scatterometer measurement and the GMF in N-dimensional measurement space. The MLE

is related to the probability P that the GMF at a certain wind speed and direction represents the
measurement by

Poce™* | 3.2)
Therefore, wind vectors with low MLE have a high probability of being the correct solution. On the
other hand, wind vectors with high MLE are not likely represented by any point on the GMF.
Details on the inversion problem can be found in [7] and [8]. PenWP includes the Multiple Solution

Scheme (MSS), see [9].

3.2 Routines

The inversion module class contains two modules named inversion and post_inversion. They are
located in subdirectory genscat/inversion. Tables 3.1 and 3.2 list all routines in the modules.
Appendix B.1 shows the calling tree for the inversion routines.

Routine Call Routine Call
invert_one_wvc PenWP INTERPOLATE generic

fill wind quality code invert _one_wvc interpolateld calc_sigma0
save_inv_input not used interpolated2d calc_sigma0
read_inv_input not used interpolate2dv calc_sigma0

22

Doc ID

: NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Routine Call Routine Call
save_inv_output not used interpolate3d calc_sigma0

do_parabolic_winddir search
calc_normalisation
calc_sign MLE
print_message
init_inv_input
init_inv_output
init_inv_settings _to_default
write_inv_settings to_file
get inv_settings
set_inv_settings
check_input data
find_minimum_cone_dist
get _parabolic_minimum
calc_cone_distance
calc_dist_to_cone_center
convert_sigma_to_zspace
get _ers_noise_estimate
calc_var s0

get _dynamic_range

get GMF version_used
calc_sigma0

invert_one_wvc
invert_one_wvc
invert_one_wvc
see B.1

PenWP
invert_one_wvc
PenWP

not used

PenWP

PenWP
invert_one_wvc
invert_one_wvc
do_parabolic_winddir search
find_minimum_cone_dist
not used
invert_one_wvc
calc_var_s0
calc_normalisation
not used

not used

see B.1

read LUT

create LUT C VV

test for identical LUTs
my_mod

my_min

my_max

my_average

get _indices_lowest local minimum
my_index_max

my_exit
print_wind_quality code
print_input _data_of inversion
print_output data_of inversion
print_in_out data_of inversion
calc_sigma0_cmod4

f1

Get_Br_from_Look Up_Table
calc_sigma0_cmod5
calc_sigma0_cmod5 5
calc_sigma0 _cmod5 n
calc_sigma0 cmod6

calc_sigma0
calc_sigma0
calc_sigma0

not used

see B.1

see B.1

see B.1
invert_one_wvc
see B.1

see B.1

see B.1
check_input data
see B.1

not used

create LUT C VV
calc_sigma0_cmod4
calc_sigma0_cmod4
create LUT C VV
create LUT C VV
create LUT C VV
create LUT C VV

Table 3.1 Routines in module inversion.

Routine

Call

normalise_conedist_ers_ascat
calc_kp ers_ascat
calc_geoph_noise_ers_ascat
normalise_conedist_prescat_mode
get_ers_noise_estimate
check_ers_ascat_inversion_data
check_wind_solutions_ers_ascat
remove_one_solution
calc_probabilities

not used
normalise_conedist_ers_ascat
calc_kp ers_ascat

not used
normalise_conedist_prescat_mode
not used

not used
check_wind_solutions_ers_ascat
PenWP

Table 3.2 Routines of module post_inversion.

To establish the MLE function (1), the radar cross section according to the GMF, o %Gur, must be
calculated. This is done in routine calc_sigma(. The GMF used is read as a Look Up Table (LUT)
from a binary file. The GMF at Ku-band for HH and V'V polarization is not known in analytical
form. It is only available in the form of lookup tables (in directory PenWP/data). The value for
o cur is obtained from interpolation of this table. The interpolation is done via symbolic routine
INTERPOLATE which 1is set to interpolateld, interpolateld, interpolateldv, or interpolate3d,
depending on the type of interpolation needed.

3.3

The output wind direction of inversion routines are generally given in the meteorological

Antenna direction

convention, see table 3.3. The inversion routine uses a wind direction that is relative to the antenna
direction. The convention is that if the wind blows towards the antenna then this relative wind

23

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

direction equals to 0. Therefore, it is important to check the convention of the antenna (azimuth)
angle and add a correction value if needed.

For Ku-band scatterometers, the radar look angle (antenna angle or simply azimuth) equals O if the
antenna is orientated towards the North (oceanographic convention). The radar look angle increases
clockwise. Therefore, the antenna angle does not need a correction in order to obtain wind directions
in meteorological convention.

Meteorological Oceanographic Mathematical u v Description

0 180 270 0 -1 Wind blowing from the north
90 270 180 -1 0 Wind blowing from the east
180 0 90 0 1 Wind blowing from the south
270 90 0 1 0 Wind blowing from the west

Table 3.3 Conventions for the wind direction.

24

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

4 Ambiguity Removal module

4.1 Ambiguity Removal

Ambiguity Removal (AR) schemes select a surface wind vector among the different surface wind
vector solutions per WVC for the set of wind vector cells in consideration. The goal is to set a unique,
meteorological consistent surface wind field. The surface wind vector solutions per WVC, simply
called ambiguities, result from the wind retrieval processing step.

Whenever the ambiguities are ranked, a naive scheme would be to select the ambiguity with the first
rank (e.g., the highest probability, the lowest distance to the wind cone). In general, such a persistent
first rank selection will not suffice to create a realistic surface wind vector field: scatterometer
measurements tend to generate ambiguous wind solutions with approximately equal likelihood
(mainly due to the ~180° invariance of stand-alone scatterometer measurements). Therefore,
additional spatial constraints and/or additional (external) information are needed to make sensible
selections.

A common way to add external information to a WVC is to provide a background surface wind
vector. The background wind acts as a first approximation for the expected mean wind over the cell.
In general, a NWP model wind is interpolated for this purpose. Whenever a background wind is set
for the WVC, a second naive Ambiguity Removal scheme is at hand: the Background Closest (BC)
scheme. The selected wind vector is just the minimiser of the distance (e.g., in the least squares
sense) to the background wind vector. This scheme may produce far more realistic wind vector fields
than the first rank selection, since the background surface wind field is meteorologically consistent.

However, background surface winds have their own uncertainty. Therefore, sophisticated schemes
for Ambiguity Removal take both the likelihood of the ambiguities and the uncertainty of the
background surface wind into account. An example is the KNMI Two-Dimensional Variational
(2DVAR) scheme.

The implementation of the 2DV AR scheme in PenWP is described in section 4.4.

4.2 Module ambrem

Module Ambrem is the interface module between the various ambiguity removal methods and the
different scatterometer data processors. Table 4.1 provides an overview of the different routines and
their calls. A dummy method and the first rank selection method are implemented as part of ambrem.
More elaborate Ambiguity Removal methods have an interface module, see table 4.2. Figure 4.1
shows schematically the interdependence of the various modules for Ambiguity Removal.

25

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design Version : 4.0.02
Date : August 2022

Routine Call Description
InitAmbremModule ~ PenWP Initialization of module Ambrem
InitAmbremMethod ~ PenWP Initialization of specified AR scheme
DoAmbrem PenWP Execution of specified AR scheme
Ambrem1stRank DoAmbrem First rank selection method
DoDummyMeth DoAmbrem Dummy AR scheme for testing
SetDummyMeth DoAmbrem Batch definition of dummy method
InitDummyMeth DoAmbrem Initialization of dummy method
InitDummyBatch not used
ExitAmbremMethod ~ PenWP Deallocation of memory

Table 4.1 Routines of module Ambrem.

Routine Description Documentation
Ambrem2DVAR Interface to KNMI 2DV AR method Section 4.4
AmbremBGClosest Interface to Background Closest method Section 4.1

Table 4.2 Interface modules for different Ambiguity Removal schemes.

ambrem
\ 4 A \ 4
Ambrem2DVAR AmbremPreScat »| AmbremBGclosest
A
BatchMod <
v \ 4
TwoDvar convert
\ 4 A
CostFunction StrucFunc
y \ 4 \ 4
TwoDvarData BFGSMod SingletonFFT

Figure 4.1 Interdependence of the modules for Ambiguity Removal. The connections from module
ambrem to module BatchMod and from module Ambrem2DVAR to convert are not drawn.

4.3 Module BatchMod

After the wind retrieval step, the Ambiguity Removal step is performed on selections of the available
data. In general, these selections are just a compact part of the swath or a compact part of the world
ocean. The batch module BatchMod facilitates these selections of data. In fact, a batch data structure
is introduced to create an interface between the swath related data and the data structures of the

26

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

OSI SAF PenWP Top Level Design

different AR methods. Consequently, the attributes of the batch data structures are a mixture of
swath items and AR scheme items. Figure 4.2 gives a schematic overview of the batch data structure.
Descriptions of the attributes of the individual batch data components are given in table 4.3.

BatchRowType

BatchCellType

BatchQualFlagType

BatchAmbiType

Figure 4.2 Schematic representation of the batch data structure.

BatchType
Attribute Type Description
NrRows Integer Number of rows in batch
Row BatchRowType Array of rows
BatchRowType
Attribute Type Description
RowNr Integer Row number within orbit
NrCells Integer Number of cells in batch (max 76)
Cell BatchCellType Array of cells within row
BatchCellType
Attribute Type Description
NodeNr Integer Node number within orbit row
lat Real Latitude
lon Real Longitude
ubg Real u-component of background wind
vbg Real v-component of background wind
NrAmbiguities Integer Number of ambiguities
Ambi BatchAmbiType Array of ambiguities
BatchAmbiType
Attribute Type Description
selection Integer Index of selected ambiguity
uana Real u-component of analysis wind
vana Real v-component of analysis wind
f Real Contribution of this cell to cost function
gu Real Derivative of f'to u
gv Real Derivative of f'to v
qualflag BatchQualFlagType Quality control flag

Table 4.3 Batch data structures.

To check the quality of the batch a quality flag is introduced for instances of the BatchCellType. The

27

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

OSI SAF PenWP Top Level Design

flag is set by routine TestBatchCell(). The attributes of this flag of type BatchQualFlagType are
listed in table 4.4.

Module BatchMod contains a number of routines to control the batch structure. The calls and tasks
of the various routines are listed in table 4.5. The batch structure is allocatable because it is only
active between the wind retrieval and the ambiguity removal step.

Attribute Description

Missing Quality flag not set

Node Incorrect node number specification
Lat Incorrect latitude specification

Lon Incorrect longitude specification
Ambiguities Invalid ambiguities

Selection Invalid selection indicator
Background Incorrect background wind specification
Analysis Incorrect analysis

Threshold Threshold overflow

Cost Invalid cost function value
Gradient Invalid gradient value

Table 4.4 Batch quality flag attributes.

Routine Call Description
AllocRowsAndCellsAndInitBatch ~ Processor Allocation of batch
AllocAndInitBatchRow AllocRowsAndCellsAndInitBatch ~ Allocation of batch rows
AllocAndInitBatchCell AllocAndInitBatchRow Allocation of batch cells
AllocRowsOnlyAndInitBatch not used
InitBatchModule Ambrem Initialization module
InitBatch AllocRowsAndCellsAndInitBatch Initialization of batch
InitBatchRow InitBatch Initialization of batch rows
InitBatchCell InitBatchRow Initialization of batch cells
InitbatchAmbi InitBatchCell Initialization of batch
ambiguities
DeallocBatch Processor Deallocation of batch
DeallocBatchRows DeallocBatch Deallocation of batch rows
DeallocBatchCells DeallocBatchRows Deallocation of batch cells
DeallocBatchAmbis DeallocBatchCells Deallocation of batch
ambiguities
TestBatch Processor Test complete batch
TestBatchRow TestBatch Test complete batch row
TestBatchCell TestBatchRow Test batch cell
TestBatchQualFlag Processor Print the quality flag
getBatchQualFlag not used
setBatchQualFlag not used
PrnBatchQualFlag not used

Table 4.5 Routines of module BatchMod.

28

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

4.4 The KNMI 2DVAR scheme

4.4.1 Introduction

The purpose of the KNMI 2DVAR scheme is to make an optimal selection provided the (modelled)
likelihood of the ambiguities and the (modelled) uncertainty of the background surface wind field.
First, an optimal estimated surface wind vector field (analysis) is determined based on variational
principles. This is a very common method originating from the broad discipline of Data
Assimilation. The optimal surface wind vector field is called the analysis. Second, the selected wind
vector field (the result of the 2DV AR scheme) consists of the wind vector solutions that are closest
to the analysis wind vector. For details on the KNMI 2DVAR scheme formulation the reader is
referred to [10]. Information on 2DVAR can also be found in [11], [12] and [13].

From PenWP version 2.1 onwards, the 2DVAR scheme has been extended with empirical
background error correlations, invoked by the ~-nbec command line option.

From PenWP version 2.2 onwards, 2DVAR operates on a grid that is constructed using spherical
trigonometric methods. The grid is as regular as possible and correctly handles irregular WVC grids
that can be expected from future coastal products.

The calculation of the cost function and its gradient is a rather complex matter. The reader who is
only interested in how the 2DV AR scheme is assembled into the genscat module class ambrem is
referred to subsection 4.4.2. Readers interested in the details of the cost function calculations and
the minimization should also read the subsequent subsections. Subsection 4.4.3 forms an
introduction to the cost function. It is recommended to first read this section, because it provides
necessary background information to understand the code. Subsection 4.4.7 on the actual
minimization and subsection 4.4.8 on Fast Fourier Transforms are in fact independent of the cost
function itself. The reader might skip these subsections.

4.4.2 Data structure, interface and initialisation

The main module of the 2DV AR scheme is 7woDvar. Within the genscat ambiguity removal module
class, the interface with the 2DV AR scheme is set by module Ambrem2DVAR. Table 4.6 lists its
routines that serve the interface with TwoDvar-.

Routine Call Description

Do2DVARonBatch DoAmbrem Apply 2DVAR scheme on batch

Batchinput2?DVAR Do2DVARonBatch Fills the 2DV AR data structure
with input

find obs indices in 2dvar grid Batchinput2DVAR Find 2DV AR grid indices and
interpolation coefficientsof an
observation

get differenc_vector find obs indices in 2dvar grid Calculate difference of two vectors

BatchOutput2?DVAR Do2DVARonBatch Fills the batch data structure with
output

Set WVC Orientations Batchlnput2DVAR Sets the observation orientation

generate 2dvar_grid PenWP Generate 2DVAR grid from batch
data using spherical trigonometry

dump 2dvar grid PenWP For debugging purposes

Table 4.6 Routines of module Ambrem2DVAR.

29

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Routine generate 2dvar grid calculates the 2DVAR grid from the batch data. It determines the
centres of the first and last row of the batch, defined a great circle through them (the “backbone”),
and defines the grid cells at regular distances perpendicular to the backbone (the “ribs’). This routine
is called from routine remove_ambiguities in module penwp ambrem.F90.

These routines are sufficient to couple the 2DVAR scheme to the processor. The actual 2DVAR
processing is done by the routines of module TwoDvar itself. These routines are listed in table 4.7.
Figures B2.1-B2.6 show the complete calling tree of the AR routines.

Routine Call Description

InitTwodvarModule Initialization of module TwoDvar
Do2DVAR Do2DVARonBatch Cost function minimization
PrintObs2DVAR Batchlnput2DVAR Print a single 2DV AR observation

ExitTwodvarModule ExitAmbremMethod Deallocation of module TwoDvar

Table 4.7 Routines of module TwoDvar.

The Obs2dvarType data type is the main data structure for calculating the observation part of the
cost function from the observed winds. Its attributes are listed in table 4.8. The TDV_Type data type
contains all parameters that have to do with the 2DV AR batch grid on which the analysis is actually
calculated: dimensions, sizes, and derived parameters. These data structures are defined in module
TwoDvarData and the routines in this module are listed in table 4.10.

Attribute Type Description

alpha Real Rotation angle

cell Integer Store batch cell number

row Integer Store batch row number

igrid Integer Row index
Jerid Integer Node index

lat Real Latitude to determine structure function
wil Real Interpolation weight lower left
wir Real Interpolation weight lower right
Wul Real Interpolation weight upper left
Wur Real Interpolation weight upper right
ubg Real Background EW wind component
vbg Real Background NS wind component
NrAmbiguities Integer Number of ambiguities

incr() AmbilncrType Ambiguity increments

uAnalncr Real Analysis increment

vAnalncr Real Analysis increment

selection Integer Selection flag

QualFlag TwoDvarQualFlagType Quality control flag

f Real Cost function at observation

gu Real df/du

gv Real df/dv

Table 4.8 The Obs2dvarType data structure.

30

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02

Date : August 2022
Attribute Type Description
delta Real 2DVAR grid size in position domain
delta p Real 2DVAR grid size in frequency domain
delta_q Real 2DVAR grid size in frequency domain
NI Integer Dimension 1 of 2DVAR grid
HI Integer N1/2
K1 Integer H1+1,number of nonnegative frequencies
N2 Integer Dimension 2 of 2DVAR grid
H2 Integer N2/2
K2 Integer H2+1,number of nonnegative frequencies
Ncontrol Integer Size of control vector
VarQC type Integer Type of Variational Quality Control used
NWVC Integer Number of WVCs per roe
GEP Real array Gross Error Probabilities

Table 4.9 The 7DV Type data structure.

Routine Call Description

TDV Init InitTwodvarModule Initialization of 2DV AR grid and preparations

Set _HelmholzCoefficients TDV Init Set Helmholz transformation coefficients

Set CFW TDV Init Set cost function weights

TDV Exit ExitTwodvarmodule Deallocate memory

InitObs2dvar Batchinput2DVAR, Allocation of observations array
BatchOutput2DVAR

DeallocObs2dvar BatchOutput2?DVAR Deallocation of observations array

InitOneObs2dvar InitObs2dvar Initialization of single observation

TestObs2dvar Do2DVAR Test single observation

Prn2DVARQualFlag Do2DVAR Print observation quality flag

set2DVARQualFlag TestObs2DVAR Convert observation quality flag to integer

get2DVARQualFlag not used Convert integer to observation quality flag

Table 4.10 Routines in module TwoDvarData.

The quality status of an instance of Obs2dvarType is indicated by the attribute Qual/Flag which is
an instance of TwoDvarQualFlagType. The attributes of this flag are listed in table 4.11.

Attribute Description

missing Flag values not set

wrong Invalid 2DVAR process

Lat Invalid latitude

Background Invalid background wind increment
Ambiguities Invalid ambiguity increments
Selection Invalid selection

Analyse Invalid analysis wind increment
Cost Invalid cost function specification
gradient Invalid gradient specification
weights Invalid interpolation weights

grid Invalid grid indices

Table 4.11 Attributes of 2DV AR observation quality flag.

31

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

The size of the 2DV AR grid grid, delta, may be chosen larger than that of the WVCs by an arbitrary
factor which is typically 2.This is because the 2DV AR analysis is not needed at its best resolution:
it is only used to determine the scatterometer wind direction. Moreover, the true spatial scatterometer
resolution is about twice the WVC size. Defining the 2DV AR analysis on a coarser grid also reduces
computation time. As a consequence, the analysis must be interpolated to the positions of the
observations in order to correctly calculate the observation part of the cost function. That is why the
interpolation weights W are needed in the Obs2dvarType data structure. The weights are calculated
in three-dimensional space using simple vector algebra. In doing so, the observation grid may be
irregular.

The 2DVAR cost function minimization is done in terms of the wind potential and stream function
in the Fourier domain. This is done to keep 2DVAR in line with the ECMWF 4DVAR scheme.
Transformation to the Fourier domain simplifies the calculation of the background part of the cost
function if the background error correlationa are a function of distance only. As a consequence, the
2DVAR batch grid needs to have a zone free of observations around the observations. The width of
this zone (in units of 2DV AR batch grid size) is given by the attribute GridExtent. It should be large
enough to ensure that the effect of the observations as determined by the background error
correlations, has decreased to zero at the edges of the 2DVAR batch grid. Otherwise, numerical
errors will be introduced in the Fourier transformations.

4.4.3 Reformulation and transformation

The minimization problem to find the analysis surface wind field (the 2D Variational Data
Assimilation problem) may be formulated as

mvinJ(v) , JO)=J,0+J,. (), 4.1)

where v is the surface wind field in consideration and J the total cost function consisting of the
observational term Jos, and the background term Jj,. The solution, the analysis surface wind field,
may be denoted as v,. Being just a weighted least squares term, the background term may be further
specified as

T =[v-v,, I" B [v=v,,], 4.2)

where B is the background error covariance matrix. The J,»s term of the 2DVAR scheme is not
simply a weighted least squares term.

Such a formulation does not closely match the code of the 2DVAR scheme. In fact, for scientific
and technical reasons several transformations are applied to reformulate the minimization problem.
Description of these transformations is essential to understand the different procedures within the
code. The interested reader is referred to [10].

4.4.4 Module CostFunction

Module CostFunction contains the main procedure for the calculation of the cost function and its
gradient. It also contains the minimization procedure. Table 4.12 provides an overview of the
routines.

32

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Routine Call Description
Jt Minimise Total cost function and gradient
Jb Jt Background term of cost function
Jo Jt Observational term of cost function
JoScat Jo Single observation contribution to the cost function
Unpack _ControlVector Jo Unpack of control vector
Pack ControlVector Jo Pack of control vector (or its gradient)
Uncondition Jo Several transformations of control vector
Uncondition_adj Jo Adjoint of Uncondition.
Minimise Do2DVAR (TwoDvar) Minimization
DumpAnalysisField Do2DVAR Write analysis field to file

Table 4.12 Routines of module CostFunction.

4.4.5 Adjoint method

The minimization of cost function is done with a quasi-Newton method. Such a method requires an
accurate approximation of the gradient of the cost function. The adjoint method is just a very
economical manner to calculate this gradient. For introductory texts on the adjoint method and
adjoint coding, see, e.g., [14] or [15]. For detailed information on the adjoint model in 2DVAR see
[10].

4.4.6 Structure Functions

Module StrucFunc contains the routines to calculate the covariance matrices (background error
correlations, BECs) for the stream function i/, and the velocity potential y. Its routines are listed in
table 4.13.

Routine Call Description
SetCovMat Do2DVAR Calculate the covariance matrices
StrucFuncPsi SetCovMat Calculate
StrucFuncChi SetCovMat Calculate y

Table 4.13 Routines of module StrucFunc.

Routine SerCovMat calculates the background error correlation matrix, routines StrucFuncPsi and
StrucFuncChi calculate the BEC for yand y, respectively. By default a Gaussian form is employed
for w and , but this can be changed to empirical BECs with the —-nbec command line option of
PenWP. The empirical BEC is read from file nbec ascat-a-coa cos-auto-
4000 tccal obserrcorr.dat indirectory genscat/ambrem.

4.4.7 Minimization

The minimization routine used is LBFGS. This is a quasi-Newton method with a variable rank for
the approximation of the Hessian written by J. Nocedal. A detailed description of this method is
given by [16]. Routine LBFGS is freeware and can be obtained from web page
http://www.netlib.org/opt/index.html, file 1bfgs um.shar. The original Fortran 77 code has
been adjusted to compile under Fortran 90 compilers. Routine LBFGS and its dependencies are
located in module BFGSMod . F90 in directory genscat/support/BFGS. Table 4.14 provides

33

http://www.netlib.org/opt/index.html

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

an overview of the routines in this module.

Routine LBFGS uses reverse communication. This means that the routine returns to the calling
routine not only if the minimization process has converged or when an error has occurred, but also
when a new evaluation of the function and the gradient is needed. This has the advantage that no
restrictions are imposed on the form of routine J¢ calculating the cost function and its gradient.

The formal parameters of LBFGS have been extended to include all work space arrays needed by
the routine. The work space is allocated in the calling routine minimise. The rank of LBFGS affects
the size of the work space. It has been fixed to 3 in routine minimise, because this value gave the
best results (lowest values for the cost function at the final solution).

Routine Call Description

LBFGS minimise Main routine

LBI LBFGS Printing of output (switched off)

daxpy LBFGS Sum of a vector times a constant plus another vector with loop unrolling.
ddot LBFGS Dot product of two vectors using loop unrolling.

MCSRCH LBFGS Line search routine.

MCSTEP MCSRCH Calculation of step size in line search.

Table 4.14 Routines in module BFGSMod.

Some of the error returns of the line search routine MCSRCH have been relaxed and are treated as a
normal return. Further details can be found in the comment in the code itself.

Routines daxpy and ddot were rewritten in Fortran 90. These routines, originally written by J.
Dongarra for the Linpack library, perform simple operations but are highly optimized using loop
unrolling. Routine ddot, for instance, is faster than the equivalent Fortran 90 intrinsic function
dot_product.

4.4.8 SingletonFFT_Module

Module SingletonFFT Module in directory genscat/support/singletonfft contains the
multi-variate complex Fourier routines needed in the 2DVAR scheme. A mixed-radix Fast Fourier
Transform algorithm based on the work of R.C. Singleton is implemented.

Routine Call Description

SingletonFFT2d SetCovMat, Uncondition, 2D Fourier transform
Uncondition_adj

SFT FindNearestDim PenWP Find FFT dimension

i SingletonFFT2d Main FFT routine

SFT Permute fi Permute the results

SET PermuteSinglevariate ~ SFT_Permute Support routine

SFT_PermuteMultivariate SFT Permute Support routine

SFT PrimeFactors fi Get the factors making up N

SFT Base2 fi Base 2 FFT

SFT Base3 fi Base 3 FFT

SFT Base4 fi Base 4 FFT

SFT Base5 fi Base 5 FFT

SFT BaseOdd fit General odd-base FFT

SFT Rotate i Apply rotation factor

34

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Table 4.15 Fourier transform routines.
Table 4.15 gives an overview of the available routines. The figures in Appendix B2 shows the calling
tree of the FT routines relevant for 2DVAR.

Remark: the 2DV AR implementation can be made more efficient by using a real-to-real FFT routine
rather than a complex-to-complex one as implemented now. Since PenWP satisfies the requirements
in terms of computational speed, this has low priority.

35

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

5 Module iceModelMod

Module iceModelMod is part of the genscat support modules. It contains all the routines for
initialising, reading, writing and printing of the SSM/I grids for the North Pole and South Pole
region.

5.1 Background

The distribution of backscatter points (combination of ¢ *uii_fore, & *vv-fore, 0 *Hit-at, and o yv-ag) from
ocean and sea ice surfaces is notably different. The ice screening method used in PenWP is based
on probabilistic distances to ocean wind and sea ice Geophysical Model Functions. Backscatter
points closer to the wind GMF have a higher probability of being open water, whereas backscatter
points closer to the ice GMF have a higher probability of being ice. A more detailed description of
this Bayesian statistics method and ice model is given in [6].

The -icemodel option in PenWP basically fills the fields Ice Probability and Ice Age (both present
in the KNMI BUFR format with generic wind section). Also it can output graphical maps of ice
model related parameters on an SSM/I grid for the North Pole and for the South Pole region.

Each time the satellite passes over the pole region the corresponding ice map is updated with the
new scatterometer data. A spatial and temporal averaging is performed in order to digest the new
information. After the overpass, at the end of processing an entire BUFR file, the updated
information on the ice map is put back into the BUFR structure. Optionally graphical maps are
plotted, which can be controlled by optional input parameters for routine printilceMap. The graphical
filenames have encoded the North Pole/South Pole, the date/time as well as the parameter name.
The most important ones are:

print_a: file [N|S] [yyyymmddhhmmss] . ppm contains the ice subclass and the a-ice parameter
on a grey-scale for points classified as ice.

print_t: file [N|S] [yyyymmddhhmmss] t . ppm contains the ice class.
print_sst: file [N|S] [yyyymmddhhmmss]sst.ppm contains the sea surface temparature

print_postprob: file [N|S] [yyyymmddhhmmss]postprob.ppm contains the a-posteriori ice
probability.

Typically at least two days of data are needed to entirely fill the ice map with data and give
meaningful ice model output. Because PenWP handles only one BUFR file at a time, a script is
needed that calls Pen WP several times. After each PenWP-run a binary restart file is written to disk
containing the information of an icemap (latestIceMapN.rst for the North Pole and
latestIceMapS.rst for the South Pole). With the next call of PenWP, these restart files are
read in again. Environment variable SRESTARTDIR contains the directory for the ice model restart
files.

36

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Optionally sea surface temperature (SST) data from GRIB files can be used to further improve the
quality of the ice algorithm (the use_sst logical must be turned on). All regions having an SST value
of more than 5 °C will be assigned as ‘surely water’. This helps to suppress wrong ice classifications
in rainy areas over open water.

Processing 11b input with the use of NWP data and SST data can be done with the following
command line options:

penwp —-f <bufr file> -nwpfl <gribfilelist> -icemodel

Reprocessing of level 2 input with only running the ice model on top of it can be done with the
following command line options:

penwp —f <bufr file> -icemodel -noinv —-noamb

The SSM/I grids are widely used for representation of ice related parameters. A good description as
well as some software routines can be found on the website of the National Snow and Ice Data

Centre (NSIDC): https://nsidc.org/.

5.2

Routines

Table 5.1 provides an overview of the routines in module iceModelMod.

Routine Call Description

calcPoly3 not used Calculate a 3™ order polynomial

ExpandDateTime PenWP Convert a date/time to a real

ij2latlon PenWP Calculate lat lon values from SSM/I grid coordinates
initlceMap PenWP Initialise ice map

inv_logit not used Calculate the inverse of the logit of p: 1/(1+exp(-p))
latlon2ij PenWP Calculate SSM/I grid coordinates from lat lon values
logit not used Calculate the logit of p: In(p/(1-p))

MAPLL latlon2ij Convert from lat/lon to polar stereographic coordinates
MAPXY ij2latlon (not used) Convert from polar stereographic to lat/lon coordinates
printClass not used Print the class of an ice pixel

print_ice age ascat not used Print ice age map to graphical .ppm file
printlceAscat printlceMap Print ice map for ASCAT to graphical .ppm file
printlceMap PenWP Print one or more ice map variables to graphical .ppm files
printlcePixel not used Print ice pixel information
printlceQscat printlceMap Print ice map for QuikSCAT/OSCAT to graphical .ppm file
printppm_qc not used Print WVC quality flag contents to graphical .ppm file
printppmvar printlceMap Print variable on ice map to .ppm file, mapped on gray scale
printppmvars not used Print three variables to .ppm file, mapped to an RGB scale
printSubclass printlceMap Print the ice subclass to a .ppm file
RW IceMap PenWP Read or write an ice map from/to a binary restart file
wTl PenWP Compute moving time average function
Table 5.1 Routines of module iceModelMod.
5.3 Data structures

There are two important data structures defined in this module. The first contains all relevant data
of one pixel on the ice map (IcePixel). The second one contains basically a two-dimensional array
of ice pixels and represents an entire ice map (IceMapType). This could be either an ice map of the

37

https://nsidc.org/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

North Pole region or the South Pole region.

Attribute Type Description

alce real a-ice parameter

alceAves real Average of the a-ice parameter
aSd real a-ice parameter standard deviation
class integer Ice class

subClass integer Ice subclass

sst real Sea surface temperature (K)
pXgivenlce real

pXgivenOce real

pYgivenlce real

pYgivenOce real

Pice real a-priori ice probability

plceGivenX real a-posteriori ice probability
plceGivenXave real Average a-posteriori ice probability
sumWeightST real Sum of weight factors

landmask logical land/sea indicator

timePixelNow DateTime Date/time of latest ice pixel update
timePixelPrev DateTime Date/time of previous ice pixel update

Table 5.2 Attributes for the IcePixel data type.

Attribute Type Description

nPixels integer Number of pixels for the ice map

nLines integer Number of lines for the ice map

pole integer Indicator for North Pole or South Pole

use_sst logical Control whether sea surface temp is to be used
timeMapNow DateTime Date/time of latest ice map update
timeMapPrev DateTime Date/time of previous ice map update

Xy IcePixel(nPixels, nLines) Pointer to the ice map contents

Table 5.3 Attributes for the IceMapType data type.

38

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

6 Module bufrio module

Module bufrio module is part of the genscat support modules. It is a Fortran 90 wrapper around the
ECMWF ecCodes library (see https://www.ecmwf.int/). The goal of this support module is to
provide a comprehensive interface to BUFR data for every Fortran 90 program using it. In particular,
bufrio_module provides all the BUFR functionality required for the scatterometer processor based
on genscat.

6.1 Background

The acronym BUFR stands for Binary Universal Form for the Representation of data. BUFR is
maintained by the World Meteorological Organization WMO and other meteorological centres. In
brief, the WMO FM-94 BUFR definition is a binary code designed to represent, employing a
continuous binary stream, any meteorological data. It is a self-defining, table driven and very
flexible data representation system. It is beyond the scope of this document to describe BUFR in
detail. Complete descriptions are distributed via the websites of WMO (http://www.wmo.int/) and
of the European Centre for Medium-range Weather Forecasts ECMWF (https://www.ecmwf.int/).

Module bufiio_module is in fact an interface. On the one hand it contains (temporary) definitions to
set the arguments of the ECMWEF library functions. On the other hand, it provides self-explaining
routines to be incorporated in the wider software package. Section 6.2 describes the routines in
module bufrio_module. The publicly available data structures are described in section 6.3. The
bufrio_module uses two libraries from the ecCodes software library of ECMWF. These libraries are
discussed in some more detail in section 6.4.

6.2 Routines

Table 6.1 provides an overview of the routines in module bufiio_module. The most important ones
are described below.

Routine Call Description

init BUFR data PenWP Initialization routine

set BUFR_fileattributes PenWP Initialization routine

open_BUFR_file PenWP Opens a BUFR file

get BUFR nr_of messages PenWP Inquiry of BUFR file

get BUFR message PenWP Reads instance of bufi data type from file
close_BUFR_file PenWP Closes a BUFR file

BUFR real2int PenWP Type conversion

BUFR _int2real PenWP Type conversion

save_ BUFR message PenWP Saves instance of bufi- data_type to file
fill BUFR values save_ BUFR message Fill the real values of the BUFR message
BUFR msg is valid not used

set_bufr_msg_to_invalid not used

print BUFR data not used

Table 6.1 Routines of module bufrio_module.

39

https://www.ecmwf.int/
http://www.wmo.int/
https://www.ecmwf.int/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Reading (decoding): Routine get BUFR _message() reads a single BUFR message from the BUFR
file and creates an instance of bufir_data_type.

Writing (encoding): Routine save BUFR message() saves a single BUFR message to the BUFR
file. The data should be provided as an instance of bufir data_type.

Checking and Printing: The integer parameter BufrVerbosity controls the extent of the log
statements while processing the BUFR file. The routine print BUFR_data() can be used to print and
instances of bufi_data_type.

Open and Close BUFR files: The routine open_ BUFR_file() opens the BUFR file for either reading
(writemode=false.) or writing (writemode=.true.). Routine set BUFR_fileattributes() determines
several aspects of the BUFR file and saves these data in an instance of bufi-_file_attr _data, see table
6.3. Routine get BUFR _nr_of messages() is used to determine the number of BUFR messages in
the file. Finally, routine close_ BUFR_file() closes the BUFR file.

As said before, the underlying encoding and decoding routines originate from the ECMWF ecCodes
library. Appendix B3 shows the calling trees of the routines in module bufiio_module that are used
in PenWP.

6.3 Data structures

The actual data for input or output in a BUFR message is an instance of the bufi data_type data
type, see table 6.2. Some meta information on the BUFR file is contained in the self-explaining
bufr file attr data data type, see table 6.3.

Attribute Type Description

bufr_length integer ksecO(2) length BUFR message in bytes
bufr_edition integer ksecO(3)

bufr centre integer ksecl(3)

update number integer ksecl(4)

sectionl flags integer ksecl('5)

data_category integer ksecl(6)

data_subcategory integer ksecl(7) local use

local tablesversion integer ksecl(8)

year integer ksecl(9) century year

month integer ksec1(10)

day integer ksecl(11)

hour integer ksec1(12)

minute integer ksec1(13)

master tablenumber integer ksecl(14)

master_tablesversion integer ksecl(15)

bufr subcentre integer ksec1(16)

int_subcategory integer ksec1(17)

second integer ksec1(18)

section3_flags integer ksec3(4) compressed (0,1) observed (0,1)
nelements integer number of expanded elements
nsubsets integer ksup (6) actual number of subsets
nvalues integer ksup (7) actual number of values
nreplications integer Number of delayed replications
nunexpanded integer Number of unexpanded descriptors
nexpanded integer Number of expanded descriptors

40

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Attribute Type Description
prev_unexp 1 integer Ffor housekeeping
prev_repl integer For housekeeping
unexpanded_descr() integer array List of unexpanded data descriptors
expanded_descr() integer array List of expanded data descriptors
names() character array List of expanded element names
units() character array List of expanded element units
values() real array List of values
cvals() character array List of CCITT IA no. 5 elements

Table 6.2 Attributes of the BUFR message data type bufir data_type.

Attribute Type Description

nr_of BUFR mesasges integer Number of BUFR messages
bufr_filename character BUFR file

bufr_fileunit integer Fortran unit of BUFR file

file_size integer Size of BUFR file

curr_msg integer Pointer to current message

file_open logical Open status of BUFR file

writemode logical Reading or writing mode of BUFR file
arrays_allocated logical Allocation status

message_is_valid() logical array ~ Validity of BUFR messages

Table 6.3 Attributes of the bufi_file attr data data type for BUFR files.

6.4 Libraries

Module bufrio module uses two libraries: from the ecCodes software library of ECMWEF:
libeccodes.a and libeccodes £90.a. The ecCodes software library of ECMWF is used
as a basis to decode and encode BUFR data. This software library is explained on
https://www.ecmwf.int/.

6.5 BUFR tables

BUFR tables are used to define the data descriptors. The use of BUFR tables in ecCodes is different
from the use in the old BUFRDC library. BUFR tables are created during the ecCodes compilation
and it is not necessary any more to set the environment variable $BUFR_TABLES. During the
compilation of the genscat/support/eccodes directory a few elements are added to the
library tables to handle old ERS BUFR data and the SeaWinds format with generic wind section.
This is handled automatically by the script add local defs.ksh in this directory.

41

https://www.ecmwf.int/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

7 Module gribio module

Module gribio_module is part of the genscat support modules. The current version is a Fortran 90
wrapper around the ECMWEF ecCodes library (see https://www.ecmwf.int/). The goal of this support
module is to provide a comprehensive interface to GRIB data for every Fortran 90 program using it.

In particular, gribio_module provides all the GRIB functionality required for the scatterometer
processor based on genscat.

7.1 Background

The acronym GRIB stands for GRIdded Binary. GRIB is maintained by the World Meteorological
Organization WMO and other meteorological centres. In brief, the WMO FM-92 GRIB definition
is a binary format for efficiently transmitting gridded meteorological data. It is beyond the scope of
this document to describe GRIB in detail. Complete descriptions are distributed via the websites of
WMO (http://www.wmo.int/) and of the European Centre for Medium-range Weather Forecasts
ECMWEF (https://www.ecmwf.int/).

Module gribio module is in fact an interface. On the one hand it contains (temporary) definitions to
set the arguments of the ECMWF library functions. On the other hand, it provides self-explaining
routines to be incorporated in the wider software package. Section 7.2 describes the routines in
module gribio module. The available data structures are described in section 7.3. The
gribio_module uses two libraries from the ecCodes software library of ECMWEF. This is discussed
in some more detail in section 7.4.

7.2 Routines

Table 7.1 provides an overview of the routines in module gribio module. The most important ones
are described below.

Routine Call Description

init GRIB_module PenWP Initialization routine

dealloc_all GRIB messages PenWP Clear all GRIB info from memory and close

GRIB files

set GRIB_filelist PenWP Open all necessary GRIB files

get from_GRIB_filelist PenWP, Retrieve GRIB data for a given lat and lon
get colloc_from GRIB_filelist

inquire_GRIB_filelist PenWP, Inquiry of GRIB file list

get_analyse_dates _and_times,
get colloc_from GRIB_filelist

get _colloc_from GRIB_filelist PenWP Retrieve time interpolated GRIB data for a
given lat and lon
get GRIB msgnr get field from GRIB_file, Inquiry of GRIB file list

get from_GRIB_file,
get from_GRIB_filelist,
inquire_GRIB_filelist
display req GRIB msg properties get GRIB msgnr, Prints GRIB message info

42

https://www.ecmwf.int/
http://www.wmo.int/
https://www.ecmwf.int/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Routine Call Description

display GRIB message_ properties

open_GRIB_file

read_GRIB_header _info
extract_data_from GRIB_message

get GRIB data_values

dealloc_GRIB_message

get_analyse_dates _and_times
check_proximity to_analyse
get field from GRIB_file
get from _GRIB_file

add to GRIB filelist

get _from_GRIB_filelist

get GRIB _msgnr,

get _from_GRIB_filelist

get field from GRIB_file,
get from_GRIB_file,

set GRIB _filelist,
add to GRIB_filelist
open_GRIB_file

get from_GRIB_file,

get _from_GRIB_filelist

get field from GRIB_file,
get from_GRIB_file,

get _from_GRIB_filelist
open_GRIB _file,
dealloc_all GRIB_messages,
get field from GRIB_file
get colloc_from GRIB_filelist
get colloc_from GRIB_filelist
not used

not used

not used

Prints GRIB message info

Open GRIB file and get some header
information from all messages in this file

Read header part of a GRIB message
Interpolate data from four surrounding
points for a given lat and lon

Read all data from GRIB message

Clear GRIB message from memory

Helper routine
Helper routine

Table 7.1 Routines of module gribio_module.

Reading: Routine set GRIB filelist reads GRIB messages from a list of files, decodes them and
makes the data accessible in a list of GRIB messages in memory.

Retrieving: Routine get from GRIB_filelist() returns an interpolated value (four surrounding grid
points) from the GRIB data in the list of files/messages for a given GRIB parameter, latitude and
longitude. It is also possible to get a weighted value of all grid points lying within a circle around
the latitude and longitude of interest. This is used in the land fraction calculation in PenWP. The
land fraction is calculated by scanning all grid points of the land-sea mask lying within 80 km from
the centre of the WVC. Every grid point found yields a land fraction (between 0 and 1). The land
fraction of the WVC is calculated as the average of the grid land fractions, where each grid land
fraction has a weight of 1/, r being the distance between the WVC centre and the model grid point.

Routine get colloc_from GRIB_filelist() returns an interpolated value (four surrounding grid
points) from the GRIB data in the list of files/messages for a given GRIB parameter, latitude,
longitude, and time. The list of messages must contain a sequence of forecasts with constant time
intervals (e.g. +3 hrs, +6 hrs, +9 hrs, et cetera or +4 hrs, +5 hrs, +6 hrs, +7 hrs, et cetera). At least
three forecasts need to be provided; ideally two lying before the sensing time and one after.

In this diagram, the 1, 2, and 3 mean the three forecast steps with intervals of three hours between

them. The ~ is the sensing time. The software will perform a cubic time interpolation. Note that the
1, 2 and 3 in the diagram may correspond to +3, +6 and +9 forecasts, but also e.g. to +9, +12 and
+15. If more forecasts are provided, e.g. like this:

43

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
SRS | ——=—- | ===~ | ===~ |-~
1 2 3 0~ 4 5

the software will use forecast steps 2, 3, and 4, i.e., it will pick the optimal values by itself. If one
forecast before, and two after are provided:

1~ 2 3
the software will still work, and use all three forecasts.

Checking and Printing: The integer parameter GribVerbosity controls the extent of the log
statements while processing the GRIB data.

As said before, the underlying encoding and decoding routines originate from the ECMWF ecCodes
library. Appendix B4 shows the calling trees of the routines in module gribio _module that are used
in PenWP.

7.3 Data structures

Some meta information on the GRIB file is contained in the self-explaining grib_file attr data data
type, see table 7.2.

The decoded GRIB messages in the GRIB files, with their meta information, are contained in the
grib_message data, see table 7.3.

Attribute Type Description

nr_of GRIB messages integer Number of messages in this file
grib_filename character array ~ Name of GRIB file
grib_fileunit integer Unit number in file table

file size integer Size of GRIB file in bytes

file open logical Status flag

list of GRIB message_ids integer array Message ids assigned by ecCodes
list of GRIB level integer array Key to information in messages
list of GRIB level type integer array Key to information in messages
list of GRIB date integer array Key to information in messages
list of GRIB hour integer array Key to information in messages
list of GRIB analyse integer array Key to information in messages
list of GRIB derived date integer array Key to information in messages
list of GRIB derived hour integer array Key to information in messages
list of GRIB par id integer array Key to information in messages
list of GRIB vals sizes integer array Size of data values arrays

Table 7.2 Attributes for the grib_file attr data data type.

Attribute Type Description

message pos_in_file integer Position of message in GRIB file
message_id integer Message id assigned by ecCodes
date real Date when data are valid

time real Time when data are valid
derived date real date + time/24

44

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
Attribute Type Description
derived_time real mod(time/24)
total message_size integer Size of message
vals_size integer Size of data values array
is_decoded logical Status flag
nr_lon_points integer Information about grid
nr_lat_points integer Information about grid
nr_grid_points integer Information about grid
lat_of first_gridpoint real Information about grid
lat_of last gridpoint real Information about grid
lon_of first gridpoint real Information about grid
lon_of last gridpoint real Information about grid
lat_step real Information about grid
lon_step real Information about grid
real values real array, pointer ~ Decoded real data values

Table 7.3 Attributes for the grib_message data data type.

Attribute Type Description
grib_file attributes grib file attr data GRIB file attributes
list of GRIB msgs grib message data array List of messages in file

Table 7.4 Attributes of the list_of grib_files type data type for GRIB files.

7.4 Libraries

Module gribio module uses two libraries: from the ecCodes software library of ECMWEF:
libeccodes.a and libeccodes £90.a. The ecCodes software library of ECMWF is used
as a basis to decode GRIB data. This software library is explained on https://www.ecmwf.int/.

45

https://www.ecmwf.int/

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design Version : 4.0.02
Date : August 2022
References

[4]

[5]

[7]

[9]

[11]

Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2022,
PenWP User Manual and Reference Guide, Report NWPSAF-KN-UD-009, EUMETSAT.

Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2022,
PenWP Product Specification, Report NWPSAF-KN-DS-002, EUMETSAT.

NWP SAF, 2016
Development Procedures for Software Deliverables, Report NWPSAF-MO-SW-002,
EUMETSAT

Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2022,
PenWP Test Plan and Test Report, Report NWPSAF-KN-TV-008, EUMETSAT

Risheng Y, A. Stoffelen, A. Verhoef and J. Verspeek, 2012,
NWP Ocean Calibration of Ku-band scatterometers, Proceedings of IGARSS 2012,
Munich, Germany, IEEE.

Belmonte Rivas, M. and Stoffelen, A, 2011
New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE Transactions on
Geoscience and Remote Sensing, I, 49, 6, 1894-1901, doi:10.1109/TGRS.2010.2101608.

Stoffelen, A. and M. Portabella, 2006,
On Bayesian Scatterometer Wind Inversion, IEEE Transactions on Geoscience and
Remote Sensing, 44, 6, 1523-1533, doi:10.1109/TGRS.2005.862502.

Portabella, M., 2002,
Wind field retrieval from satellite radar systems, PhD thesis, University of Barcelona.
(Available on https://scatterometer.knmi.nl/publications/).

Portabella, M. and Stoffelen, A., 2004,
A probabilistic approach for SeaWinds Data Assimilation, Quart. J. Royal Meteor. Soc.,
130, pp. 127-152.

Vogelzang, J., 2013,
Two dimensional variational ambiguity removal (2DVAR). Report NWPSAF-KN-TR-004,
EUMETSAT. (Available on https://scatterometer.knmi.nl/publications/).

Stoffelen, A., de Haan, S., Quilfen, Y., and Schyberg, H., 2000,
ERS scatterometer ambiguity removal scheme comparison, OSI SAF report. (Available on
https://scatterometer.knmi.nl/publications/).

de Vries, J., Stoffelen, A., and Beysens, J., 2005,
Ambiguity Removal and Product Monitoring for SeaWinds. KNMI. (Available on
https://scatterometer.knmi.nl/publications/).

46

https://scatterometer.knmi.nl/publications/
https://scatterometer.knmi.nl/publications/
https://scatterometer.knmi.nl/publications/
https://scatterometer.knmi.nl/publications/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design Version : 4.0.02

Date : August 2022

[14]

[15]

[17]

de Vries, J. and Stoffelen, A., 2000,
2D Variational Ambiguity Removal. KNMI, Feb 2000. (Available on
https://scatterometer.knmi.nl/publications/).

Talagrand, O., 1991,

The use of adjoint equations in numerical modeling of the atmospheric circulation. In:
Automatic Differentiation of Algorithms: Theory, Implementation and Application, A.
Griewank and G. Corliess Eds. pp. 169-180, Philadelphia, Penn: SIAM.

Giering, R., 1997,
Tangent linear and Adjoint Model Compiler, Users manual. Max-Planck- Institut fuer
Meteorologie.

Liu, D.C., and Nocedal, J., 1989
On the limited memory BFGS method for large scale optimization methods. Mathematical
Programming, 45, pp. 503-528.

Dragosavac, M., 2008,
BUFR User’s Guide, ECMWE. (Available on https://www.ecmwf.int/)

47

https://scatterometer.knmi.nl/publications/
https://www.ecmwf.int/

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix A: Calling tree for PenWP

The figures in this appendix show the calling tree for the PenWP software package. Routines in
normal print are part of the PenWP process layer. Routines in italic print are part of genscat. An
arrow (—) before a routine name indicates that this part of the calling tree is a continuation of a
branch in a previous figure. The same arrow after a routine name indicates that this branch will be
continued in a following figure.

penwp
- iargc _genscat

- getarg genscat

- write usage

- read bufr file (-)

- preprocess (-)

- calibrate s0

- get grib data (-)

- invert wvcs (-)

- ice model (-)

- remove ambiguities (-)
- calibrate s0

- postprocess (-)

- write bufr file (-)

- processicleanup

L

GetElapsedSystemTime

Figure A.1 Calling tree for penwp (top level). Lines ending with an arrow (—) are cut here and will be
continued in one of the first level or second level calling trees in the next figures. Lines with italic text
indicate genscat routines.

48

OSI SAF

Doc ID
PenWP Top Level Design | Version

Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(») read bufr file

GetElapsedSystemTime

init bufr processing

set BUFR fileattributes

open BUFR file (-)

get BUFR nr of messages

get BUFR message (-)

init cell (-)

bufr to row data noaa

BUFR_real2int

get wvc _quality noaa
get sO quality
get s0O mode

get sO surface

test cell (-)

bufr to row data gen

BUFR_reallint

get sO quality
get sO mode

get sO surface

get wvc_quality gen
test cell (-)

close BUFR file (-)

(») preprocess

Figure A.2 Calling tree for routine read bufr file (first level).

GetElapsedSystemTime

get orbit numbers

sort and merge (-)

ymd2julian

compute flight dir

L

WVC Orientation

dB2real

real2dB

test cell (-)

atm attenuation

Figure A.3 Calling tree for routine preprocess (first level).

49

Doc ID

OSI SAF PenWP Top Level Design | Version

Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(=)

(=)

get grib data

GetElapsedSystemTime
init grib processing

|: init GRIB module

set GRIB filelist (-)

inquire GRIB filelist (-)
get from GRIB filelist (-)
get colloc_from GRIB filelist (-)
test cell (-)

dealloc_all GRIB messages (-)

Figure A.4 Calling tree for routine get grib data (first level).

invert wvcs

GetElapsedSystemTime
init inversion
- init_inv _settings to_default
- get_inv_settings
- set_inv_settings
- read lut from file
I: get lun
free lun
invert node
- init_inv_input
- invert one wvc (-)
- get closest _solution
I: speeddir to u

speeddir to v

- calc probabilities
L GetSortIndex
set knmi flag

test cell (-)

Figure A.5 Calling tree for routine invert wvcs (first level).

50

Doc ID

: NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
(») ice model
- GetElapsedSystemTime
-~ initIceMap
- RW_IceMap
- get lun
- free lun

scat 2 ice map

- latlon2ij (-)
- calc _ice coord
- speeddir to_u
- speeddir to v
- SetIntegerDate
- SetIntegerTime
- update ice pixel (=)
calc pIceGivenX

- ExpandDateTime
- Wl (-)

smooth

calc aAve

- ExpandDateTime
- wT (-)
calc_asd

- ExpandDateTime

- wT (-)
calc_SubClass
ice map 2 scat

L

printIceMap (-)

set_knmi_ flag

Figure A.6 Calling tree for routine ice_model (first level).

51

Doc ID

OSI SAF PenWP Top Level Design | Version

Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(-») remove ambiguities

GetElapsedSystemTime
InitAmbremModule
L InitBatchModule
SFT FindNearestDim
InitAmbremMethod
- InitAmbremBGclosest
- InitTwodvarModule (-)
- InitDummyMethod
read lut from file
- get_lun
- free lun
fill batch
- AllocRowsAndCellsAndInitBatch
t InitBatch
AllocAndInitBatchRow
t InitBatchRow
InitBatchCell
- AllocAndInitBatchCell
t InitBatchCell
InitBatchAmbi
- speeddir to_u

- speeddir to v

- TestBatch
L TestBatchRow
L TestBatchCell
generate Z2dvar grid
get_haversine angular distance
get_course
get _point from course
DoAmbrem (-)
select wind
TestBatchCell
set knmi flag
test cell (-)
DeallocBatch
L DeallocBatchRows
L DeallocBatchCells
L DeallocBatchAmbis
ExitAmbremMethod
L ExitTwodvarModule

L TDV_Exit

Figure A.7 Calling tree for routine remove_ambiguities (first level).

52

OSI SAF PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(-») postprocess

GetElapsedSystemTime
monitoring

- speeddir to u
- speeddir to v
- get lun

- free lun
write properties

- get_lun

- free lun
write binary output

- get _lun

- free lun

Figure A.8 Calling tree for routine postprocess (first level).

(») write bufr file

GetElapsedSystemTime

init bufr processing

set BUFR file attributes
open BUFR file (-)

write data row to bufr

- InitAndSetNrOfSubsets
- row to bufr data gen
- BufrInt2Real

- set sO0 quality
- set sO0 mode

- set sO surface

- set wvc quality gen
- row to bufr data noaa

- BufrInt2Real

- set wvc _quality noaa
- set s0 quality

- set s0 mode

- set sO surface

—~ save BUFR message (-)

close BUFR file (-)

Figure A.9 Calling tree for routine write bufr file (first level).

53

OSI SAF

PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(») init cell
- init time
- init btemp

- init beam

- init wind

get sO0 quality
get sO mode

get sO surface

- get wvc _quality gen
- init icemodel
- init nwp stress param

- 1init process flag

Figure A.10 Calling tree for routine init cell (second level).

(») test cell

test time
test beam

test wind

Figure A.11 Calling tree for routine test cell (second level).

(-») sort and merge

T merge_rows

- init cell

- copy cell

- GetSortIndex

set knmi flag
compute cell latlon
test cell (-)

(=)

Figure A.12 Calling tree for routine sort_and _merge (second level).

54

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design Version : 4.0.02

Date : August 2022

(») print cell

print time

print beam

print wind
print wvc quality
print ambiguity

print process flag

Figure A.13 Calling tree for routine print_cell (second level).

(-») update ice pixel

ExpandDateTime
get class

get px

Figure A.14 Calling tree for routine update_ice_ pixel (second level).

55

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B1: Calling tree for inversion routines

The figures in this appendix show the calling tree for the inversion routines in genscat. All routines
are part of genscat, as indicated by the italic printing. An arrow (—) before a routine name indicates
that this part of the calling tree is a continuation of a branch in a previous figure. The same arrow
after a routine name indicates that this branch will be continued in a following figure.

(-) invert one_wvc
|— init inv_settings to_default
init_inv_output
print message
check_input data
I- print _input data of inversion
I- my exit
L print message
convert sigma_to_zspace
calc normalisation
L calc var_sO0
find minimum cone dist (-)

my_min

my_max
get_indices lowest local minimum
I- my_index max
L print message
do_parabolic _winddir_search

L

get parabolic_minimum
L my exit
GetSortIndex
SortWithIndex
calc_sign MLE

L calc_sigmalO (-)

I_
I_
I_
|
|
|
I_
I_
|_
|_
|— my_average
|_
I_
|
|
I_
|
|
|_
|_
|_
'L

fill wind quality code (-)

Figure B1.1 Calling tree for inversion routine invert one wvc.

56

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

(») find minimum cone dist
I- calc _cone_distance
| L
L

calc_sigmal (-)
get parabolic_minimum

L

my exit

Figure B1.2 Calling tree for inversion routine find_minimum_cone_dist

(-) calc_sigma0
|— read LUT

| |— get lun
L free lun
create LUT C VV
I- get_lun
I- calc_sigma0_cmod4
| I— Get Br from Look Up Table
| L £
I- calc_sigmaO_cmod5 (_5, _n)
L

free lun

|

|_

|

|

|

|

|

|

|— test_for identical LUTs
|— my exit
L

INTERPOLATE

DocID : NWPSAF-KN-DS-001

Figure B1.3 Calling tree for inversion routine calc sigma0. Routine INTERPOLATE is an interface that
can have the values interpolateld, interpolate2d, interpolate2dv or interpolate3d. There are several
equivalent routines to calculate the CMOD backscatter, like calc_sigma0_cmod5, calc_sigma0O _cmod5 5,

calc_sigma0_cmod5_n.

57

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B2: Calling tree for AR routines

The figures in this appendix show the calling tree for the Ambiguity Removal routines in genscat.
All routines are part of genscat, as indicated by the italic printing. An arrow (—) before a routine
name indicates that this part of the calling tree is a continuation of a branch in a previous figure. The
same arrow after a routine name indicates that this branch will be continued in a following figure.

(-) InitTwodvarModule
L TDV_Init

I- Set CFW
L Set _HelmholzCoefficients

Figure B2.1 Calling tree for AR routine InitTwodvarModule.

58

Doc ID
OSI SAF PenWP Top Level Design | Version

Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(—») DoAmbrem
F TestBatch
| L TestBatchRow
L TestBatchCell
AmbRemlstRank
DoAmbremBGclosestOnBatch
L uv_to dir
DoAmbremPreScatOnBatch
L DoAmbremBGclosestOnBatch
L

uv_to dir

F BatchInput2DVAR

TestBatchCell

InitObs2DVAR (-)

Set WVC Orientations

L WVC Orientation

rotuv

latlon2xyx

find obs_indices_in 2dvar grid

L

get difference_ vector

r— T T "1~ "1 " T1T"°T1

|

|_

|_

|

|_

|

|

F Do2DVARonBatch
|

|

|

|

|

|

|

|

|

| | PrintObs2DVAR

| F Do2DVAR (-)

| L BatchOutput2DVAR

| F rotuv

| F InitObs2DVAR (-)
| L DeallocObs2DVAR
L DoDummyMeth

Figure B2.2 Calling tree for AR routine DoAmbrem.

(-») InitObs2dvar
L InitOneObs2dvar
L TestObs2dvar
L set2DVARQualFlag

Figure B2.3 Calling tree for AR routine /nitObs2dvar.

59

DocID : NWPSAF-KN-DS-001
OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022
(—) Do2DVAR
I- TestObs2dvar

(-) Jt

|_
|_
|
|
|
|_
|_
|
|
|
|
|
|
|
|_
|
L

L set2DVARQualFlag
Prn2DVARQualFlag
SetCovMat

F StrucFuncPsi

F StrucFuncChi

L SingletonFFT2d (-)
Jgt (=)

Minimise

F oot

L LBFGS
daxpy
ddot
LB1

| i i i

MCSRCH

L MCSTEP
TestObs2dvar

L set2DVARQualFlag

DumpAnalysisField

Figure B2.4 Calling tree for AR routine Do2DVAR.

Jo
Unpack ControlVector
Uncondition

L SingletonFFT2d (-)
JoScat
Uncondition_adj

L SingletonFFT2d (-)

r— 1 1. - 1T 1

Pack ControlVector

Figure B2.5 Calling tree for AR routine J¢ (calculation of cost function).

60

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

(-~) SingletonFFT2d
L fft
SFT PrimeFactors
SFT Permute
I— SFT PermuteSinglevariate
L SFT PermuteMultivariate
SFT _Base2
SFT _Base3
SFT _Base4
SFT _Base5

SFT_BaseOdd

rr——r 1 ‘11— T T

SFT Rotate

Figure B2.6 Calling tree for AR routine SingletonFFT2D.

61

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B3: Calling tree for BUFR routines

The figures in this appendix show the calling tree for the BUFR file handling routines in genscat.
Routines in italic are part of genscat. Underlined routines followed by (E) belong to the ECMWF
ecCodes library. An arrow (—) before a routine name indicates that this part of the calling tree is a
continuation of a branch in a previous figure. The same arrow after a routine name indicates that this
branch will be continued in a following figure.

(—) open BUFR file
codes open file (E)

codes count in file (E)

codes bufr new from file (E)

codes release (E)

r—r T 1T 1

codes close file (E)

Figure B3.1 Calling tree for BUFR file handling routine open BUFR _file.

(~) close BUFR file
L

codes close file (E)

Figure B3.2 Calling tree for BUFR handling routine close_ BUFR_file.

(—-) get BUFR message

codes close file (E)

codes open file (E)

codes bufr new from file (E)

codes release (E)

codes set (E)

codes get (E)

codes get string array (E)

r—TT T T T

codes release (E)

Figure B3.3 Calling tree for BUFR handling routine get BUFR_message.

62

OSI SAF PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(—) save BUFR message

|_

|_
|_
|
|
|
|_
L

codes bufr new from samples (E)

codes set (E)

fill BUFR values

I- codes get (E)
I- codes get string array (E)

L codes set (E)

codes write (E)

codes release (E)

Figure B3.4 Calling tree for BUFR file handling routine save BUFR_message.

63

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B4: Calling tree for GRIB routines

The figures in this appendix show the calling tree for the GRIB file handling routines in genscat.
Routines in italic are part of genscat. Underlined routines followed by (E) belong to the ECMWF
ecCodes library. An arrow (—) before a routine name indicates that this part of the calling tree is a
continuation of a branch in a previous figure. The same arrow after a routine name indicates that this
branch will be continued in a following figure.

(~) set GRIB filelist
L open GRIB file

grib open file (E)

grib multi support on (E)

grib new from file (E)

T T 7T

read GRIB header_info

L grib get (&)
Figure B4.1 Calling tree for GRIB file handling routine sez GRIB_filelist.

(») inquire GRIB filelist
L get GRIB msgnr
I- display req GRIB msg properties

L display GRIB message properties

Figure B4.2 Calling tree for GRIB file handling routine inquire GRIB_filelist.

64

OSI SAF PenWP Top Level Design

DocID : NWPSAF-KN-DS-001
Version : 4.0.02
Date : August 2022

(~) get_from GRIB filelist

get GRIB msgnr
I- display req GRIB msg properties
L display GRIB message properties
display req GRIB msg properties
display GRIB message properties
get GRIB data values
I grib get ()
|— grib is missing (E)
L grib set (m)

get _angle distance

r————T T 71T ———7

extract data from GRIB message

Figure B4.3 Calling tree for GRIB file handling routine get from GRIB_filelist.

(~) get_colloc_from GRIB filelist

convert to derived datetime

L conv_date_ to_daycount
get _analyse date_and times

L inquire GRIB filelist (-)
check proximity to_analyse

L

conv_date to_daycount

inquire GRIB filelist (-)

r—— T — T ——71

get from GRIB filelist (-)

Figure B4.4 Calling tree for GRIB file handling routine get colloc_from GRIB_filelist.

(—~) dealloc_all GRIB messages
I- dealloc_GRIB message

I- grib release (E)
L

grib close file (E)

Figure B4.5 Calling tree for GRIB file handling routine dealloc_all GRIB_messages.

65

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B5: Calling tree for HDFS routines

The figures in this appendix show the calling tree for the HDF5 file handling routines in genscat.
All routines are part of genscat, as indicated by the italic printing. Underlined routines followed by
(H) belong to the HDFGROUP HDFS library. Other underlined routines belong to the sdf5io library
(in C). An arrow (—) before a routine name indicates that this part of the calling tree is a continuation
of a branch in a previous figure. The same arrow after a routine name indicates that this branch will
be continued in a following figure. Note that these routines are called only from the HDF to BUFR
conversion tools, see section 2.3.10.

(—) h5f open
L h5f open ¢

|‘ H5Fopen (H)
L H5Eset auto (H)

Figure B5.1 Calling tree for HDFS5 file handling routine 25f open.

(~) h5g _open
L h5g open ¢
L H5Gopen (H)

Figure B5.2 Calling tree for HDFS5 file handling routine h5g open.

(-) h5d_open
h5d open ¢
L H5Dopen (H)

Figure B5.3 Calling tree for HDFS file handling routine 25d open.

66

OSI SAF PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

(-) hb5a_get string

h5a open name c

L H5Aopen name (H)

h5a get type c

L H5Aget type (H)

hba read char c

L #saread (a)
h5t close ¢
L H5Tclose (H)

r——r1r - T°rr - 11

h5a close c

L H5Aclose (H)

Figure B5.4 Calling tree for HDFS5 file handling routine 25a_get string.

(~) h5d_get npoints

h5d get space c

L H5Dget space (H)

h5s get select npoints c

L

H5Sget select npoints (H)

| D A

h5s close ¢

L H5Sclose (H)

Figure B5.5 Calling tree for HDFS file handling routine 25d get npoints.

(») h5d_read int
L h5d read int c

L H5Dread (H)

Figure B5.6 Calling tree for HDFS file handling routine h5d read_int.

67

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

(-~) h5d read string

h5a get type c

L H5Aget type (H)

h5t get size c
L H5Tget size

hba read char c

L wsaread (m)

r— T T

h5t close ¢
L H5Tclose (H)

Figure B5.7 Calling tree for HDFS file handling routine 25d read string.

(») h5d_read float
L h5d read float c

L H5Dread (H)

Figure B5.8 Calling tree for HDFS5 file handling routine h5d read float.

(-) h5d_close
L h5d close ¢
L H5Dclose (H)

Figure B5.9 Calling tree for HDFS5 file handling routine 25d_close.

(~) h5g_close

L h5g close ¢
L H5Gclose (H)

Figure B5.10 Calling tree for HDF5 file handling routine #5g close.

(-) h5f close
L h5f close c
L H5Fclose (H)

Figure B5.11 Calling tree for HDFS file handling routine A5/ close.

68

DocID : NWPSAF-KN-DS-001

OSI SAF PenWP Top Level Design | Version : 4.0.02
Date : August 2022

Appendix B6: Calling tree for ice model routines

The figures in this appendix show the calling tree for the ice model routines in genscat. All routines
are part of genscat, as indicated by the italic printing. An arrow (—) before a routine name indicates
that this part of the calling tree is a continuation of a branch in a previous figure. The same arrow
after a routine name indicates that this branch will be continued in a following figure.

(-) latlon2ij
mapll

Figure B6.1 Calling tree for routine latlon2ij.

(-) wT
ExpandIntegerDate
I- ExpandIntegerTime

L ymd2julian

Figure B6.2 Calling tree for routine w7.

(-~) printIceMap

printIceAscat
| I- get_lun
| L free lun
I- printIceQscat
| I- get_lun
| L free lun
|— printSubclass
| |— get lun
| L free lun
L printppmvar
|— get lun
L free lun

Figure B6.3 Calling tree for routine printlceMap.

69

OSI SAF

DocID : NWPSAF-KN-DS-001
Version : 4.0.02

PenWP Top Level Design
Date : August 2022

Appendix C: Acronyms

Name Description

AR Ambiguity Removal

ASCAT Advanced SCATterometer on MetOp

BUFR Binary Universal Form for the Representation of data

C-band Radar wavelength at about 5 cm

ERS European Remote Sensing satellites

ECMWF European Centre for Medium-range Weather Forecasts

EUMETSAT European Organization for the Exploitation of Meteorological Satellites

genscat generic scatterometer software routines

GMF Geophysical model function

HDF5 Hierarchical Data Format version 5

HSCAT Scatterometer onboard of the Chinese Haiyang-2 series satellites

ISRO Indian Space Research Organisation

KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological
Institute)

Ku-band Radar wavelength at about 2 cm

Lib Level 1b product

LUT Look up table

Metop Meteorological operational Satellite

MLE Maximum Likelihood Estimator

MSS Multiple Solution Scheme

NOAA United States National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction

OSCAT Scatterometer onboard of the Indian Oceansat and ScatSat satellites

OSI Ocean and Sea Ice

PenWP Pencil Beam Wind Processor

QC Quality Control

RMS Root Mean Square

SAF Satellite Application Facility

SSM/1 Special Sensor Microwave / Imager

SST Sea Surface Temperature

WVC Wind Vector Cell, also called node or cell

Table C.1 List of acronyms.

70

NWPSAF-KN-DS-001

N
N
S
N
~ B
S &
S 5
< <
g
2¢s
Q
53 B
a>A

PenWP Top Level Design

OSI SAF

iagrams

: UML Class Di

Appendix D

()Bely ss2204d Ul

()Beyy sssooudund

uoi323|8s [e2160|
Aunbiquie [eaibo|
puim|apow [edibo|
[#]weaq |eaiboj
Ju~apou |ed1boj

Joy 2z1s |axid |eaibo|
uojje| [eaibo|

awiy [eaibo]
uoljow3es |e3ibo|
sjuawniisul~es |ediboj
pi~a31121es |e21bo]

(Jweied 552135 dmu Juud

(Jweled ssauls dmuiul

(Jpuim jund
(Jpuim—3sa3
(puIm 31Ul
1p [ead
paads |eau

mn.ﬂwvc,;@

()@2e4NS 0S5 338

()22euns ps 326
()@oepins os jund

dewuajie |eaibo|
dew 221 [e2160|
221 [e2160|

pue| |e21Bo|
Buissiw [eaiBoj

maﬁlmumt:mlom@

ds |eals
3uyo |eas
3ss |eal
beal
1leal
Alead
njess

adA1 weled ssa11s dmu @

IFEERT]
sse|2 uabajul

()2217und
[\ ERIREII]
|0s” puim Jabajul (JAunBigwe jund
355 [eal ()A3nBique 3w
mu,“ WMMA 2dueisipauod |eal
> [eas _qoud |eas
iy AIp ioLa [ead
M TE paads 1oLia [eal
M= puim adAy puim

adA317be|y sseo0ud @

adA3 201 @

maﬁwﬁ_zu_ngm@

()Auenb ps 13b
()A31enb™ps Jurid

()Aqenb”0s 125

()epow ps 313s
()epow ps 336
()apow ps Juud

sal”mo| |ed1bo|
1Je |edibo|
121no |edibo|
Buissiw |eaiboj

maﬁwmno&wom@

(Jweaq jund
(Jweaq 3523
(Jweaq 3ul

oe4ins s 2dA) 23e4Ins 05
apowgs adA1 " spow 0s
K3enb™gs adA3"A311enb os

1402 gewbis [eau

b @oueuen™gs |eal
27dy |eal

q d |eas

e dy |eay

Jus |eau

oewbis |eaus
ERIERINEEY
yanwize jeal
anjeA”usiie |eal
uo| |eal

1e| [ead

Jejod™y 1aBajul
winu 13631ul
sjyBiam wins |eas

[gsTl@2 adAy |22
Moi7s1y1 aium [eoiboj
s|122 wnu Jabajul

adA1" mou @

adAy weaq @

suawayda |eaiboj
apniiae |eaiboj
aunjesadway [ea1bo|
41ys bauy [eaibo|
aouabianuod [ea1fo|
as|nd |edibg)

abuel |ebo|
anjebau |ed1bo)
ol3es”asiou [ed160|
Apgesn jeoiboj
Buissiw [es1boj

()dwaig

adAy A11enb™gs @

(Jawnjuud

(Jawii"3s=1
()awi3 3w

(Jeeou”AJllenb oam 135

(Jeeou”Aqjenb oam 136
(Juab Ajijenb oAm 135
(JusB Anjenb oam 136

()A31enb oAm Julid

ps dwa3 ybuq |eas
dwa3 ybuLq |eas
wnu~101 43621u1
Jejod ™y 1abajul

adA3 dwaiq @

puodas abajul
21nulw Jabajul
Jnoy Jabajul
Aep uabajul
yjuow Jabajul
aeak usbajul

adA1 awi @

ANTZ ueylaiow [e21bo)
weaq unoj [ed1bo|
anuelsip Juwb |eaibo)
uepunpai |ed1bo|
punoiboeq ou |e2ibo|
12333p ulel [e2160o|
2b~Bu13seamou |e2160|
|lews [e2160o|

abue| |e21bo|
uolsianul |eaibo)

a0l |eaibo|

pue| |ed160]

2b lea |ea1bo|

ab 1wy [e21bo|
anjeauouw |e316o|
Bejjuow |ed160|

d>f [eaibo|

yanwize [ea16o
pewbis |enb |e2160O|
passed |e21bo|
Buissiw |ed160|

adA3"Ajijenb™oAm @

71

OSI SAF

PenWP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-001
0 4.0.02
: August 2022

@ cell_type

integer centre_id
integer sub_centre_id
integer software_id_l1b
integer satellite_id
integer sat_instruments
integer sat_instr_short
integer gmf_id

real sat_motion
time_type time

real lat

real lon

integer time_to_edge
integer time_diff_qual
real pixel_size_hor
integer orbit_nr
integer row_nr

integer node_nr
integers0_in_cell

real rain_prob

real rain_nof

real rain_rate

real rain_attenuation
btemp_type btemp[2]
beam_type beam[4]
integer software_id_wind
integer generating_app
wind_type model_wind
real ice_prob

real ice_age
wvc_quality_type wve_quality
integer num_ambigs
integer num_ambigs_n
integer indices_sol_n[4]
integer selection
ambiguity_type ambig*
ice_type ice
nwp_stress_param_type stress_param
process_flag_type process_flag
real conedist_avg

real joss

wind_type analysis_wind
real jobs

init_cell()
test_cell()
print_cell()

Figure D.1 UML Class Diagrams for the PenWP data structures, see section 2.3.1. The first image
provides the full overview, the second image details the cell type struct.

72

	Contents
	1 Introduction
	1.1 User requirements
	1.2 Conventions

	2 Program Design
	2.1 Top Level Design
	2.1.1 Main program
	2.1.2 Layered model structure
	2.1.3 Data Structure
	2.1.4 Quality flagging and error handling
	2.1.5 Verbosity

	2.2 Module design for genscat layer
	2.2.1 Module inversion
	2.2.2 Module ambrem
	2.2.3 Module icemodel
	2.2.4 Module bufrio_module
	2.2.5 Module gribio_module
	2.2.6 Module HDF5Mod
	2.2.7 Support modules

	2.3 Module design for process layer
	2.3.1 Module penwp_data
	2.3.2 Module penwp_bufr
	2.3.3 Module penwp_prepost
	2.3.4 Module penwp_calibrate
	2.3.5 Module penwp_grib
	2.3.6 Module penwp_inversion
	2.3.7 Module penwp_ambrem
	2.3.8 Module penwp_icemodel
	2.3.9 Module penwp
	2.3.10 HDF to BUFR conversion tools

	3 Inversion module
	3.1 Background
	3.2 Routines
	3.3 Antenna direction

	4 Ambiguity Removal module
	4.1 Ambiguity Removal
	4.2 Module ambrem
	4.3 Module BatchMod
	4.4 The KNMI 2DVAR scheme
	4.4.1 Introduction
	4.4.2 Data structure, interface and initialisation
	4.4.3 Reformulation and transformation
	4.4.4 Module CostFunction
	4.4.5 Adjoint method
	4.4.6 Structure Functions
	4.4.7 Minimization
	4.4.8 SingletonFFT_Module

	5 Module iceModelMod
	5.1 Background
	5.2 Routines
	5.3 Data structures

	6 Module bufrio_module
	6.1 Background
	6.2 Routines
	6.3 Data structures
	6.4 Libraries
	6.5 BUFR tables

	7 Module gribio_module
	7.1 Background
	7.2 Routines
	7.3 Data structures
	7.4 Libraries

	References
	Appendix A: Calling tree for PenWP
	Appendix B1: Calling tree for inversion routines
	Appendix B2: Calling tree for AR routines
	Appendix B3: Calling tree for BUFR routines
	Appendix B4: Calling tree for GRIB routines
	Appendix B5: Calling tree for HDF5 routines
	Appendix B6: Calling tree for ice model routines
	Appendix C: Acronyms
	Appendix D: UML Class Diagrams

