
NWP SAF
Satellite Application Facility
for Numerical Weather Prediction
Document   NWPSAF-KN-VS-002

Version 1.0

October 2002

A probabilistic approach for SeaWinds data
assimilation: an improvement in the nadir
region

Marcos Portabella Astronomy and Meteorology Department,
University of Barcelona

Ad Stoffelen KNMI



NWP SAF
Satellite Application Facility for Numerical Weather Prediction

Report of Visiting Scientist Mission

A probabilistic approach for SeaWinds data
assimilation: an improvement in the nadir region

Marcos Portabella
Astronomy and Meteorology Department, University of Barcelona

A Stoffelen
KNMI

NWPSAF-KN-VS-002 Version 1.0, October 2002

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 25 November 1998, between EUMETSAT and the Met Office, UK, by
one or more partners within the NWP SAF. The partners in the NWP SAF are the Met
Office, ECMWF, KNMI and Météo France.

Copyright 2002, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks

1.0 22.10.02 M.Portabella,
A.Stoffelen





Contents iii 

 

Contents 
 

ABSTRACT.................................................................................................................................... 1 

1 INTRODUCTION....................................................................................................................... 3 

1.1 Cost function.................................................................................................................................. 4 
1.1.1 Wind retrieval skill .................................................................................................................................5 
1.1.2 QuikSCAT example ...............................................................................................................................6 

1.2 Standard procedure .................................................................................................................... 10 
1.2.1 Inversion...............................................................................................................................................10 
1.2.2 Ambiguity removal...............................................................................................................................13 
1.2.3 Relevance of spatial resolution.............................................................................................................15 

1.3 Multiple solution scheme............................................................................................................ 20 

2 COMPARISON BETWEEN THE STANDARD PROCEDURE AND THE MSS ............ 25 

2.1 Statistical results ......................................................................................................................... 25 

2.2 Cases............................................................................................................................................. 28 

3 NEED FOR A QUALITY CONTROL AT 100 KM RESOLUTION .................................. 33 

4 SUMMARY AND CONCLUSIONS ....................................................................................... 37 

APPENDIX A: MLE NORM AT 100-KM RESOLUTION..................................................... 39 

APPENDIX B: METEOROLOGICAL CASES ....................................................................... 43 

REFERENCES............................................................................................................................. 49 

ACKNOWLEDGEMENTS......................................................................................................... 51 
 

 



A probabilistic approach for SeaWinds data assimilation: an improvement in the nadir region iv 



Abstract 1 

 

Abstract 
 

Scatterometer sea-surface wind observations are being successfully assimilated into Numerical 
Weather Prediction (NWP) models. However, the impact of such observations often critically 
depends on their quality. In this respect, the quality of the winds retrieved from the new 
SeaWinds scatterometer (onboard QuikSCAT) depends on the subsatellite cross-track location. In 
particular, the poor azimuth separation or diversity between views (beams) in the nadir region 
results in poor quality winds. 

The standard wind retrieval procedure consists of considering the Maximum Likelihood 
Estimator (MLE) cost function local minima as the potential (ambiguous) wind solutions that are 
used by the Ambiguity Removal (AR) procedure to select the observed wind. In the QuikSCAT 
nadir region, where the cost function minima are broad, the use of the standard procedure results 
in arbitrary and inaccurate winds. A scheme, which allows more ambiguous wind solutions when 
the retrieval results in broad cost function minima, i.e., a multiple solution scheme (MSS), is 
proposed as alternative to the standard procedure. The probability of every ambiguous solution of 
being the “true” wind is empirically derived and used in the AR procedure to make the scheme 
flexible enough to accept many wind solutions. The AR scheme uses National Centre for 
Environmental Prediction (NCEP) 24-hour forecasts as NWP background. 

A comparison between the standard wind retrieval and the MSS procedures at 100-km resolution 
is then performed, using the European Centre for Medium-range Weather Forecast (ECMWF) 
First Guess at Appropriate Time (FGAT) model winds for validation. The MSS turns out to be 
more in agreement with ECMWF than the standard procedure, especially at nadir. Moreover, it 
shows more spatially consistent and realistic winds by more effectively exploiting the 
information content of the observations. In fact, AR results in winds with generally higher a 
priori probability and generally good agreement between a priori probability and AR selection. 
As such, the MSS concept is potentially beneficial for QuikSCAT data assimilation purposes in 
NWP. Finally, the lack of an effective Quality Control (QC) at 100-km resolution, essential for 
assimilation purposes, is discussed and several methods are recommended for further 
investigation. 
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1 Introduction 
 

The forecast of extreme weather events is not always satisfactory, while their consequences can 
have large human and economic impact. Since many weather disturbances develop over the 
oceans, sea surface wind observations can help to improve the prediction of the intensity and 
position of such disturbances. 

Nowcasting, short-range forecasting and numerical weather prediction (NWP) assimilation can 
benefit from the sea surface wind observations. In this respect, Stoffelen and Anderson (1997a) 
show that spaceborne scatterometers, which are able to provide accurate winds over the ocean 
surface, have a beneficial impact on analyses and short-range forecast, mainly due to 
improvements on the sub-synoptic scales. Moreover, the impact of assimilating sea surface winds 
into NWP models significantly depends on the data coverage. Stoffelen and Van Beukering 
(1997) and Undén et al. (1997) show a much more positive impact by duplicating the sea surface 
wind data coverage. 

The SeaWinds instrument onboard QuikSCAT satellite (launched in June 19, 1999) is a conical-
scanning pencil-beam scatterometer. It uses a rotating 1-meter dish antenna with two spot beams, 
an H-pol beam and a V-pol beam at incidence angles of 46º and 54º respectively, that sweep in a 
circular pattern. The antenna radiates microwave pulses at a frequency of 13.4 GHz (Ku-Band) 
across a 1800-km-wide swath centered on the spacecraft’s nadir subtrack, making approximately 
1.1 million 25-km ocean surface wind vector measurements and covering 90% of the Earth’s 
surface every day. 

The SeaWinds swath is divided into equidistant across-track WVCs or nodes numbered from left 
to right when looking along the satellite’s propagation direction. The nominal WVC size is 25 km 
x 25 km, and all backscatter measurements centered in a WVC are used to derive the WVC wind 
solutions. Due to the conical scanning, a WVC is generally viewed when looking forward (fore) 
and a second time when looking aft. As such, up to four measurement classes (called “beam” 
here) emerge: H-pol fore, H-pol aft, V-pol fore, and V-pol aft, in each WVC. Due to the smaller 
swath (1400 km) viewed in H-pol at 46º degrees incidence, the outer swath WVCs have only V-
pol fore and aft backscatter measurements. For more detailed information on the QuikSCAT 
instrument and data we refer to Spencer et al. (1997), JPL (2001), and Leidner et al. (2000). 

In comparison with previous scatterometers, the SeaWinds system has a much higher coverage 
and, as such, is potentially very useful for data assimilation in NWP models. However, because 
of its rotating mechanism, the SeaWinds antenna beam geometry varies across the subsatellite 
track. As reported by Portabella and Stoffelen (2002a) and Stiles et al. (2002), the quality of the 
retrieved winds depends on the azimuth angle separation among beams (or views), i.e. on the 
azimuth diversity. The poorer the azimuth diversity, the lower the quality of the retrieved winds 
is. In particular, the nadir region of the QuikSCAT swath has poor azimuth diversity, i.e. inner 
and outer views are close in azimuth and fore and aft views are close to 180° apart. This region 
represents a considerable portion of the QuikSCAT inner swath, i.e. about 500 km. Therefore, in 
order to successfully assimilate QuikSCAT winds into NWP models, additional effort is required 
to improve the wind retrieval in the nadir region. 
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Portabella and Stoffelen (2002a) extensively examined the wind retrieval problem in the 
QuikSCAT nadir region, determining why the standard wind retrieval procedure produces such 
poor quality winds and proposing an alternative method, i.e. the multiple solution scheme (MSS), 
to overcome such problem. In this introduction (see following subsections) we extensively 
reproduce the work performed by Portabella and Stoffelen (2002a). In chapter 2, we compare the 
standard wind retrieval procedure with the MSS at 100-km resolution, using the European Centre 
for Medium-range Weather Forecast (ECMWF) model winds as reference. In chapter 3 we 
address the problem of quality control (QC) at 100-km. Finally, in chapter 4, the summary and 
conclusions are presented. 

 

1.1 Cost function 
 

In remote sensing, the relationship between any observation or set of observations and one or 
more geophysical state variables is generally represented with the following equation: 

)(xy nK=  (1) 

where y is the vector of observations, x is the vector of state variables that y depends on, and the 
operator Kn is the so-called forward model, which relates the state variables to the observations; 
the subscript n reminds us that it might be non-linear. The process of deriving the best estimate of 
x for a given y, allowing for observation errors, is called inversion. There are several approaches 
for inverting remotely sensed variables, including Bayes’ theorem, exact algebraic solutions, 
relaxation, least squares estimation, truncated eigenvalue expansions, etc (Rodgers, 2000). The 
most general approach to the problem is the Bayesian approach. This approach is also used in 
scatterometry, where the inversion process is highly non-linear. 

Several optimization techniques, which depend on the desired statistical objective, can be applied 
when using the Bayesian approach, including maximum likelihood, maximum posterior 
probability, minimum variance, minimum measurement error, etc. The maximum likelihood 
estimation is the most commonly used technique to invert winds in scatterometry (Pierson, 1989; 
Stoffelen, 1998). 

For SeaWinds, the Maximum Likelihood Estimator (MLE) is defined as [adopted from JPL 
(2001)]: 
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where N is the number of measurements, σmi° is the backscatter measurement, σsi° is the 
backscatter simulated through the Geophysical Model Function (GMF) for different wind speed 
and direction trial values, and Kp(σsi°) is the measurement error variance (noise). Strictly 
speaking, when assuming Gaussian errors, a term ))(ln( o

siKp σ  should be added to the right-hand 

side of equation 2 but this term is not significant and, as such, is not used. [Note: the Kp is 
usually taken proportional to either σmi° or σsi°; the latter is chosen to derive winds at 25-km 
resolution, following the MLE definition for QuikSCAT given by the Jet Propulsion Laboratory 
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(JPL). On the other hand, recent experiments (see Appendix A) seem to indicate that, for 
SeaWinds, a Kp proportional to σmi° is slightly better than a Kp proportional to σsi° at 100-km 
resolution (see equation 2); as such, the former is used in chapter 2.] 

According to the Bayes’ theorem, the MLE value represents the probability of a trial wind vector 
(solution) being the “true” wind. The SeaWinds optimization technique consists of looking for 
the minima of equation 2, which represent the local solutions with maximum probability of being 
the “true” wind. Since it is computationally expensive to search for minimum MLE in the entire 
wind domain, the following procedure is usually applied in scatterometry: 

• For a particular wind direction, the minimum MLE is searched as a function of wind 
speed, which, in contrast with wind direction, behaves quasi-linearly and a single 
well-determined minimum is usually found. The search is generally performed at the 
speed step size given by a look-up-table (LUT) (0.2 m/s for QuikSCAT). 

• The same operation is repeated for every wind direction, at the step size given by the 
LUT (2.5° for QuikSCAT). The resulting minimum MLE as a function of wind 
direction is referred to as MLE cost function. 

In the standard wind retrieval procedure, the MLE cost function is searched for minima. There 
are typically up to four minima, which are called ambiguous wind solutions. A spatial filter or 
ambiguity removal (AR) scheme is then used to select the observed wind field from the 
ambiguous wind field. 

 

1.1.1 Wind retrieval skill 
 

The MLE (see equation 2) can be interpreted as a measure of the distance between a set of σmi° 
values and the solution σsi° set lying on the GMF surface in a transformed measurement space 
where each axis of the measurement space is scaled by Kp(σsi°) (Stoffelen and Anderson, 1997b). 
The shape of the MLE cost function is determined by the σ° modulation of any view and the 
relative geometry among views. By using the MLE cost function minima in the retrieval 
(standard procedure), the shape of the cost function will determine the skill of the wind retrieval. 

Figure 1 shows an example of the MLE cost function for QuikSCAT as a function of wind 
direction. The diamond symbols indicate the ambiguous wind solutions detected by the inversion 
procedure. The shape of the minima determines the accuracy of the wind retrieval. The broader 
the minima, the less accurate the retrieved winds are, since we are ignoring the neighbouring 
wind solutions to the minima, which are of comparable probability of being the “true” wind, i.e., 
comparable MLE value. The depths of the minima relative to each other determine in this case 
the likelihood of each ambiguous solution of being the “true” wind and therefore the ambiguity or 
uncertainty of the system. The closer the depth of the secondary minima to that of the primary 
(deepest) minimum and the larger the number of (deep) minima, the more ambiguous the wind 
retrieval is. 

The modulation of the cost function (difference between maximum and minimum in Figure 1) is 
also important in terms of wind retrieval accuracy. It shows how unlikely the lowest likelihood 
points of the cost function are compared to the highest likelihood points. For example, the low 
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GMF modulation at low winds results in a low cost function modulation. In this case, the wind 
direction solutions coming out of the inversion are not so meaningful anymore, since the standard 
procedure is ignoring many cost function points of comparable probability to that of the 
ambiguous solutions. As such, a low cost function modulation corresponds to a low wind 
direction skill1. 

The MLE cost function is an output of the inversion, and as such is reflecting the inherent 
inversion problems. Using the minima of the MLE cost function as the only ambiguous wind 
solutions can lead to poor quality retrievals. As we will see in section 1.3, if we properly use the 
information on accuracy and ambiguity derived from the MLE cost function (inversion), the wind 
retrieval may improve significantly. 

MLE along line of minima

0 60 120 180 240 300 360
Wind Direction (degrees)

0

20

40

60

80

M
LE

 

Figure 1 Example of MLE cost function for QuikSCAT node number 33. The diamond symbols indicate the locations 
of the minima found by the inversion procedure. 

 

1.1.2 QuikSCAT example 
 

As already mentioned, the wind retrieval performance decreases in certain regions of the 
QuikSCAT swath. This is an inherent problem of the QuikSCAT inversion, which is reflected in 
the shape of the MLE cost function. 

The example shown in Figure 1 corresponds to node number 33. This WVC is inside the nadir 
region (WVC numbers 29-48), close to the sweet region (WVC numbers 9-28 and 49-68). As we 
approach the nadir sub-track of the satellite (nodes 38 and 39) and the azimuth diversity 
decreases, the MLE cost function minima tend to become broader and therefore wind retrieval 
less accurate. In contrast, when approaching the sweet region and the azimuth diversity increases, 
the minima become steeper and consequently the wind retrieval more accurate. In the outer 
region (WVC numbers 1-8 and 69-76), the wind vector is not anymore overdetermined since 
                                                           
1 Wind direction information is meteorologically less meaningful for low winds. We generally find that the wind 
vector error does not depend on wind speed. 
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there are only two views. The MLE cost function will have most of the times four minima with 
nearly equal and low MLE values. The outer region is therefore the most ambiguous of the 
QuikSCAT swath. The minima in this region will be steep and therefore as accurate as those in 
the sweet swath, except for the nodes at the edges of the swath, where the two outer views are 
close to each other (poor azimuth separation) and therefore broad minima in wind direction are 
again present. 

In order to better illustrate the QuikSCAT inversion problem, we have inverted QuikSCAT 
winds, using inversion software available at the Royal Dutch Meteorological Institute (KNMI), 
and performed collocations with ECMWF model winds over a period of 12 hours (more than 7 
orbits). 

Figure 2 shows the two-dimensional histograms of the 1st rank (deepest cost function minimum) 
KNMI-retrieved wind solution versus the ECMWF wind for wind speed (left plots) and wind 
direction (right plots), and for different parts of the swath: sweet (top plots), nadir (middle plots) 
and outer (bottom plots) regions. Note that the right plots are computed for ECMWF winds larger 
than 4 m/s. This is done to avoid noise in the plots, produced by the typical low wind direction 
skill at low winds, i.e., for a constant wind vector error the wind direction error is increasing with 
decreasing wind speed. The ambiguity of the system is reflected in the quality of the 1st rank 
solution. In other words, the deeper the 1st rank in comparison with the secondary minima, the 
higher the likelihood of the corresponding rank-1 wind to be the “true” wind (higher 1st rank 
skill), i.e., the lower the ambiguity. It is clearly discernible from the plots that the sweet swath is 
the region with the best 1st rank skill. It has the lowest bias and standard deviation (SD) values 
and the highest correlation values of the entire swath in both speed and direction. As expected, 
the worst 1st rank skill corresponds to the outer regions. The uncertainty or ambiguity is revealed 
in the wind direction contour plots as data accumulation away from the main diagonal (see 0° line 
departure in the plots). In particular, the typical 180° ambiguity of scatterometer data is shown as 
data accumulation along the 180° diagonals. Again, the sweet region (plot b) shows little data 
accumulation away from the main diagonal, mainly located along the 180° diagonals. In the nadir 
swath (plot d), the data accumulation away from the main diagonal is larger and somewhat more 
spread in comparison with the sweet swath, denoting a slightly worse ambiguity problem. Note 
the large accumulations of data along the 180° diagonals and elsewhere in the outer swath (plot 
f), denoting the significant ambiguity of the system in these regions. 

Figure 3 shows the same as in Figure 2 but for the KNMI-retrieved wind solution closest to the 
ECMWF wind. The quality of the closest solution gives an idea of the accuracy of the wind 
retrieval. Note that the wind speed and wind direction contour lines of both the sweet (top plots) 
and the outer swaths (bottom plots) are close to the diagonal line, denoting high accuracy of the 
wind retrieval. However, this is not the case for the nadir swath (middle plots). Moreover, the 
bias and SD values are significantly larger than in the rest of the swath, denoting relatively poor 
wind retrieval accuracy at nadir. 
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                   e)                                                        f) 
outer swath
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Figure 2 Two-dimensional histogram of the 1st rank KNMI-retrieved wind solution versus ECMWF wind in the 
different parts of the swath: the sweet (top plots), the nadir (middle plots) and the outer (bottom plots) regions. The 
left plots correspond to wind speed (bins of 0.4 m/s) and the right plots to wind direction (bins of 2.5°). The latter are 
computed for ECMWF winds larger than 4 m/s. N is the number of data; mx and my are the mean values along the x 
and y axis, respectively; m(y-x) and s(y-x) are the bias and the standard deviation with respect to the diagonal, 
respectively; and cor_xy is the correlation value between the x- and y-axis distributions. The contour lines are in 
logarithmic scale: each step is a factor of 2 and the lowest level (outer-most contour line) is at N/8000 data points. 
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Figure 3 Same as Figure 2 but for the KNMI-retrieved wind solution closest to ECMWF wind. 
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In summary, as seen in Figures 2 and 3, the sweet regions show the best wind retrieval skill of the 
QuikSCAT swath, in terms of ambiguity and accuracy. Although there is a significant ambiguity 
problem in the outer swath, its accuracy is comparable to that of the sweet swath1. The wind 
retrieval accuracy in the nadir region is significantly poorer compared to the outer and sweet 
regions of the QuikSCAT swath and has no precedent in scatterometry; as such, special attention 
should be given to it. 

The QuikSCAT azimuth diversity smoothly changes with the node number in the inner swath. In 
other words, there is no discontinuity between the sweet and the nadir regions. As such, it seems 
reasonable to consider the sweet swath as well for this study. Therefore, we focus our research on 
improving wind retrieval in the inner swath (sweet + nadir), giving special attention to the nadir 
region. However, this does not mean that the methodology applied for the inner swath is not valid 
for the outer swath. In principle, the results from this study are applicable to the outer swath as 
well. 

 

1.2 Standard procedure 
 

The scatterometer wind retrieval procedure consists of inversion and AR. In this section, we 
describe the standard inversion + AR methodology used in scatterometry. 

 

1.2.1 Inversion 
 

The MLE-based inversion has already been discussed in section 1.1. The standard procedure 
gives up to four ambiguous wind solutions, corresponding to the cost function minima. In the 
process of deriving such minima, several parameters can be tuned to improve the inversion in 
terms of ambiguity and quality. An example on how to perform a comprehensive inversion 
tuning, in this case for QuikSCAT, can be found in Portabella and Stoffelen (2002a). The tuning, 
although improving the overall wind retrieval skill, does not solve any of the already discussed 
inherent inversion problems. 

As an interface between the inversion and the AR, a natural step in scatterometry is to convert the 
MLE into a solution probability. According to Bayes theorem and the formulation of the MLE 
explained in section 1.1, the probability of being the “true” wind given a set of scatterometer 
observations is related by definition to the MLE in the following way: 

2/1
)|( MLEo e

k
vp −=σ , (3) 

                                                           
1 Note that a feature of the closest is that the more solutions are available, the better the apparent quality. However, it 
is clear that quality degrades with the number of solutions. The outer swath results are therefore too optimistic, since 
the outer swath represents more solutions (typically four) than the rest of the swath (on average, between two and 
three). 
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where v represents the “true” wind and σ° the set of backscatter measurements, and k is a 
normalization factor. The theoretical relationship is therefore an exponential. In other words, as 
the MLE, which represents the misfit of the measurements with the solution lying on the GMF 
surface, increases, the probability of that particular solution being the “true” wind decreases 
exponentially. In reality, some of the contributions to the observation error are not properly 
accounted for (see Portabella, 2002) and, as such, the shape of the exponential may differ from 
the theory. A comprehensive characterization of the solution probability for QuikSCAT, based on 
the empirical methodology described by Stoffelen et al. (2000), follows. 

 

Empirical solution probability 

• Instead of the MLE, we use a normalized MLE or normalized residual (Rn) used by 
Portabella and Stoffelen (2001) for QuikSCAT quality control (QC) purposes to avoid the 
already mentioned problem in the measurement noise estimation, such that equation 3 is re-
written as: 

lRno e
k

vp /

'

1
)|( −=σ  (4) 

where k’ is again a normalization factor, and l is the parameter that we want to empirically 
derive. Further details on how the Rn is computed in this case can be found in Portabella and 
Stoffelen (2002a). 

• In order to empirically derive equation 4, we can ignore the a priori knowledge on the 
exponential behavior of the probability, and make the following assumption: There exists a 
function ps(x) such that, if we have a set of inversion solutions vi with normalized residual 
Rni, then the probability that rank j is the one closest to the true wind, denoted by s=j, is given 
by 
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• To determine ps(x), we concentrate first on only those cases which have exactly two solutions. 
We process about 2.5 days of QuikSCAT BUFR data and we collocate them with ECMWF 
winds. The closest solution to the ECMWF wind is used as the “selected” wind. Therefore, 
we can construct a two-dimensional histogram showing the relative probability of selecting 
the 1st rank (or the 2nd rank), as a function of Rn1 and Rn2. But according to our assumption, 
by applying equation 5 with N=2, we find that the probability of selecting the 1st rank is given 
by 

1
12

21

1
21 )}(/)(1{

)()(

)(
),|1( −+=

+
== RnpRnp

RnpRnp

Rnp
RnRnsP ss

ss

s  (6) 

• Therefore, by re-arranging equation 6, the two-dimensional histogram gives an estimate of 
ps(Rn2)/ ps(Rn1) for every combination of Rn2 and Rn1. Figure 4a shows such experimentally 
determined ratios as a function of Rn2 - Rn1, for several values of Rn1. Although for Rn1 = 2.5 
the ratio is somewhat noisy, it is discernible that the ratio is a fairly invariant function of Rn2 - 
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Rn1. Since Rn1 is constant and therefore ps(Rn1) is also a constant, this plot is actually 
showing the shape of ps(x). 

• As we know from equation 4, the shape of ps(x) is exponential and therefore we just have to 
fit the exponential to the experimental function of Figure 4a by adjusting the l parameter. 
Figure 4b shows the best fit to Figure 4a, which is represented by the following function: 

4.1/)( x
s exp −=  (7) 

where x is representing the Rn. 

In order to check whether the assumption is correct and the ps(x) we found can be generalized for 
any number of solutions and not only for two, we use the probability function to predict how 
often a certain solution rank corresponds to the “true” solution for a varying number of solutions 
and varying distributions of Rni (remember that we have used only a few constant Rn1 values to 
fit the distributions of Figure 4a). 

Tables 1 and 2 compare the predicted distributions over the different ranks with the “observed” 
distributions (using the closest to ECMWF) in the sweet and the nadir swaths respectively, for the 
set of about 2.5 days of collocated QuikSCAT-ECMWF data. The number of solutions 
corresponds to the number of minima in the MLE cost function and the solution ranking goes 
from the deepest to the shallowest cost function minimum in ascending order. The first row 
corresponds to the number of data stratified by number of solutions. As shown, when comparing 
the left side to the right side of the columns, the correspondence is remarkable. Therefore, we 

 
          a)                                                                  b) 

 

Figure 4 Plot a shows the ratio of the number of realizations of Rn2 and the number of realizations of Rn1 as a 
function of Rn2 – Rn1, and for values of Rn1=0.1 (solid), Rn1=1.1 (dashed), and Rn1=2.5 (dotted). Plot b shows the 
single exponential fit to the curves of plot a. 
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conclude that the assumption is correct and that equation 7 can be used to determine the solution 
probability. 

 

Table 1 Predicted / observed distributions at 25-km (sweet swath). 
 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 331666 233477 317373 882516 

Rank 1 91 / 90 82 / 82 77 / 79 84 / 84 

Rank 2 9 / 10 15 / 15 18 / 17 14 / 14 

Rank 3 - 3 / 3 4 / 3 2 / 2 

Rank 4 - - 1 / 1 0 / 0 

Table 2 Predicted / observed distributions at 25-km (nadir swath). 
 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 262753 172506 45638 480897 

Rank 1 82 / 80 79 / 79 65 / 66 79 / 79 

Rank 2 18 / 20 17 / 17 20 / 19 18 / 18 

Rank 3 - 4 / 4 8 / 8 2 / 2 

Rank 4 - - 7 / 7 1 / 1 

 

 

1.2.2 Ambiguity removal 
 

In order to understand the importance of the solution probability for AR, a brief description of 
AR follows. The AR is the process of selecting a unique wind vector out of a set of ambiguous 
wind vectors at each WVC. The AR is not computed in a WVC-by-WVC basis but over many 
neighbouring WVCs at once. There are two AR techniques, which are commonly used in 
scatterometry: spatial filters, e.g., median filter for QuikSCAT, and variational analysis. 
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Median filter 

The median of a group of data values is that value for which there are equal numbers of data 
values of greater and lesser magnitude. This conventional definition of the median can only be 
applied to non-circular (i.e., linear and scalar) data in which the ordering of the values is obvious. 
For circular data or vector data such as scatterometer winds, an alternative definition of median is 
used. The median of a set of data x(1), x(2),…,x(N) is defined as the number x(M) which 
minimizes: 

∑
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ixMx
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where NM ≤≤1 . 

The medians of circular and vector data calculated using the alternative definition have similar 
characteristics to the median of non-circular data, i.e., extreme and isolated data are ignored. 

The median filter is used by JPL for QuikSCAT AR (JPL, 2001) and works as follows: 

• The wind field over an entire revolution of scatterometer data is initialised with the help of an 
NWP model. For each particular WVC, the 1st rank or the 2nd rank wind vector solution, 
whichever is closer to the NWP field, is selected as first guess wind. The number of ranked 
solutions used for initialisation does not necessarily need to be two (see section 1.3). 

• The wind vectors in a 7 x 7 filter window determine a median vector for the center WVC. The 
median vector is compared with the ambiguities in that WVC, and the closest ambiguity to 
the median is selected for use in the next iteration. The entire revolution is filtered in that 
way. The process continues until it converges, i.e., when no new replacements of vectors have 
been made. 

The MLE (or probability) information is implicitly used in the median filter. The probability can 
play an important role in the selection of ambiguities used in the initialization and filtering 
processes (this is further discussed in section 1.3). However, it is never explicitly used in this AR 
technique. 

 

Variational analysis 

The variational analysis is a commonly used technique for data assimilation into NWP models. It 
consists of combining the background field (NWP) with the observations, assuming that both 
sources of information contain errors and these are well characterized, to get an analysis field, 
which is spatially consistent and meteorologically balanced. This analysis field can then be used 
for scatterometer AR, that is, to select the closest ambiguous wind solution to the analysis field at 
each WVC. At KNMI, a simple 2D (at surface level only) variational analysis scheme (2D-Var) 
has been specifically developed for AR (Stoffelen et al., 2000), which attempts to minimize the 
cost function 

scat
ob JJxJ +=)(δ , (9) 
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where Jb is the background term and Jo
scat is the observation term. It uses an incremental 

formulation with the control variable of wind increments, bxxx −=δ , defined on a rectangular 

equidistant grid. The control variable xb is the background field, which in 2D-Var is a NWP 
model forecast. The forecast is also used as first guess making the control variable equal to the 
null-vector at the start of the minimization. 

The Jb is a quadratic term that contains the inverse of the background error covariance matrix. It 
penalizes the deviation from the background field. The Jo

scat expresses the misfit between the 
ambiguous wind vector solutions and the control variable at each observation point. The 
contribution of the wind solutions in each observation point is weighted by the solution 
probability in the following way (adopted from Stoffelen and Anderson, 1997a; Stoffelen et al., 
2000): 
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where N is the number of solutions and Ki is: 
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where u and v are the wind component control variables; ui and vi, the wind solution i in zonal 
and meridional components, respectively; εu and εv the corresponding observation errors; and Pi 
the solution probability. 

In order to solve the minimization problem, a conjugate gradients method is used, which also 
requires the gradient of the cost function. After convergence, the control variable vector of wind 
increments is added to the background field to obtain the wind analysis. The analyzed wind field 
is then used for AR, as already discussed. 

The solution probability is used explicitly in this AR technique (see Stoffelen et al., 2000). It 
plays a very important role in the minimization and therefore must be characterized in a 
comprehensive way. In this respect, the empirically derived solution probability, shown in the 
previous section, is essential for a successful use of a variational AR. 

 

1.2.3 Relevance of spatial resolution 
 

KNMI has a NRT 100-km resolution QuikSCAT wind product, which includes inversion, QC 
and ambiguity removal. Stoffelen et al. (2000) show that the 25-km QuikSCAT winds are often 
too noisy, especially at low winds and in the nadir region. They also show that the averaging of 
the radar backscatter information, and therefore the reduction of the spatial resolution, 
significantly reduces the noise of the inverted winds and increases the rank-1 probability (see also 
Portabella et al., 2001). For applications such as mesoscale NWP data assimilation, where the 
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effective analysis resolution is at least 100-200 km, the use of reduced resolution QuikSCAT 
winds is effective. In this respect, several High-resolution Limited Area Model (HIRLAM) 
project countries and ECMWF are now operationally using a reduced resolution QuikSCAT wind 
processing in data assimilation. As such, a comparison between the 25-km and the 100-km 
inversions seems appropriate at this stage, and can in turn help to better understand the 
QuikSCAT inversion problem. 

 

Probability at 100-km 

We can perform this comparison in terms of the probability, since it is a closer stage to AR (see 
section 1.2.1) than the MLE. Therefore, we first compute the probability for the 100-km product, 
following the same methodology as for the 25-km product (see section 1.2.1): 

• The Rn is computed at 100-km resolution (see Portabella and Stoffelen, 2002a). 

• The shape of ps(x) is found by processing about 10 days of QuikSCAT data and shown in 
Figure 5 for the same values of Rn1 as used in Figure 4a. The curves are noisier than in Figure 
4a, since the number of data used in the 100-km two-dimensional histogram is about four 
times smaller than that used in the 25-km histogram (one 100-km WVC corresponds to 
sixteen 25-km WVCs). Despite this noise, note that the curve of Figure 4b fit also fairly well 
the curves of Figure 5. Therefore, we also use equation 7 to compute the solution probability 
at 100-km, where x is in this case the Rn at 100-km resolution. 

 

 

Figure 5 Same as Figure 4a but for the 100-km resolution Rn 
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• Similar to tables 1 and 2, the results for the verification of the 100-km probability are shown 
in tables 3 and 4, respectively. The correspondence between the predicted and the observed 
distributions is also remarkable, confirming the validity of equation 7 for computing 100-km 
probability. 

 

Comparison 

By comparing tables 1 and 2 to tables 3 and 4, respectively, one can clearly see the substantially 
higher 1st rank skill of the 100-km product, denoting a smaller ambiguity problem (see section 
1.1.2), compared to the 25-km product (note the higher percentages of the rank-1 row in the 100-
km tables in comparison with the 25-km tables). 

In order to compare both products, we have transformed the MLE cost function into a probability 
cost function by using equation 7. We invert the already mentioned sets of BUFR data (2.5 days 
for the 25-km and 10 days for the 100-km) and keep the probability cost function information. 
[Note that discussing about peaks or maxima in the probability cost function is equivalent to the 
discussion about minima in the MLE cost function]. Figure 6 shows the statistical results of 
looking at several characteristics of the cost function. 

Table 3 Predicted / observed distributions at 100-km (sweet swath). 

 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 53753 67947 73269 194969 

Rank 1 97 / 96 94 / 93 92 / 92 94 / 93 

Rank 2 3 / 4 5 / 5 7 / 7 5 / 6 

Rank 3 - 1 / 2 1 / 1 1 / 1 

Rank 4 - - 0 / 0 0 / 0 

Table 4 Predicted / observed distributions at 100-km (nadir swath). 

 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 66618 40478 9344 116440 

Rank 1 83 / 83 93 / 93 78 / 74 86 / 86 

Rank 2 17 / 17 6 / 6 16 / 19 13 / 13 

Rank 3 - 1 / 1 3 / 4 1 / 1 

Rank 4 - - 3 / 3 0 / 0 
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The top plots of Figure 6 show the histograms of the difference between the maximum (Pmax) 
and the minimum (Pmin) probabilities for the 25-km (plot a) and the 100-km (plot b) products. 
The distributions of Figure 6b are much broader and shifted towards higher probability difference 
values than the distributions of Figure 6a, denoting a better probability modulation and therefore 
less accuracy (see section 1.1.1) of the 100-km product. Comparing the sweet (solid lines) with 
the nadir (dotted lines), we see a better probability modulation for the former in both products. 

The middle plots of Figure 6 show the histograms of the number of cost function points with 
probability larger than 10% for the 25-km (plot c) and the 100-km (plot d) products. As discussed 
in section 1.1, the cost function is computed at the direction step size of the GMF LUT (2.5°) and 
therefore contains 144 points. The fact of having at least one point above 10% probability is an 
indication of a good probability modulation since it shows how likely these points are with 

respect to the remaining cost function points with average likelihood of =
144

1
 0.7%. In this 

sense, notice the larger amount of times that the 25-km product cost function does not have any 
probability value above 10% compared to the 100-km product, showing again a better probability 
modulation of the latter. In a similar way, if we compare the sweet with the nadir swaths, we 
notice a larger number of times (the double or more) where no cost function points were above 
10% probability in the latter. However, the fact of having more or less points above 10% does not 
necessarily show a better modulation. For example, if we look at the shape of the distributions in 
Figure 6d, we see that the nadir swath distribution is shifted towards a larger number of points 
compared to the sweet swath. Since the nadir swath does not usually have more than 3 solutions 
(look at the number of data with 4 solutions in comparison with the number of data with 2 or 3 
solutions in table 4), the relatively large number of points above 10% probability could be an 
indication of a flat peak, as expected from this region of the swath (see section 1.1.2). 

The bottom plots of Figure 6 show the histograms of the difference between Pmax and the mean 
probability (Pmean) over an interval of ±12.5° around Pmax for the 25-km (plot e) and the 100-
km (plot f) products. This difference gives an indication of the peak modulation. The larger the 
difference, the steeper the maximum (or main peak) of the cost function and therefore the better 
the accuracy of retrieved winds is (see sections 1.1.1 and 1.1.2). The larger accumulations of data 
at low difference values in the nadir swath (dotted) with respect to the sweet (solid) swath 
confirms the existence of flatter peaks in the former as discussed above. Moreover, this is not 
only valid for the 100-km product but also for the 25-km product. The reason why we could not 
infer flat peaks in the 25-km product from the middle plot distributions is that the flat peaks are 
below the 10% probability level imposed in such plots. However, as we see from the larger 
accumulation of data at low Pmax-Pmean values in Figure 6e with respect to Figure 6f, the peaks 
are much flatter (lower peak modulation) at 25-km than at 100-km resolution. 

Therefore, we conclude that, for QuikSCAT, the 100-km product is less ambiguous and more 
accurate than the 25-km product and therefore more suitable for wind retrieval purposes than the 
25-km product. In this study, we will therefore use the 100-km product. 
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         a)                                                                     b) 

 
         c)                                                                     d) 

 
         e)                                                                     f) 

 

Figure 6 Histograms of the difference between the maximum (Pmax) and the minimum (Pmin) probabilities (top 
plots), the number of cost function points with probability larger than 10% (middle plots), and the difference between 
Pmax and the mean probability (Pmean) over an interval of ±12.5° around Pmax (bottom plots), for the sweet (solid 
lines) and the nadir (dotted lines) regions and for the 25-km (left plots) and the 100-km (right plots) products. 
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1.3 Multiple solution scheme 
 

So far, we have extensively examined the inversion problem for QuikSCAT and determined the 
relation between the relative probability of a solution and the MLE in order to prepare 
QuikSCAT ambiguous solutions for AR. We have learned that in the nadir swath, the accuracy of 
the inverted winds is low compared to the sweet swath, due to low peak modulation in the 
probability cost function. For low winds, the accuracy is also low due to the low cost function 
modulation. The worst scenario therefore occurs for low winds in the nadir swath, where the cost 
function modulation is rather flat. 

The number of solutions in the nadir swath is smaller than in the sweet swath (see the relatively 
small amount of data with 3 and 4 solutions compared with 2 solutions in table 4, in contrast with 
table 3). This may be caused by the noise and/or the shape of the cost function, i.e., a cost 
function that has well defined and steep probability peaks (or MLE minima) may have a larger 
number of peaks than a cost function that has broad peaks. However, it seems contradictory to 
provide only few wind solutions to AR when the cost function peaks are less well defined, since 
these do not represent the full information content of the wind retrieval. Along a broad peak, 
there are several wind solutions with almost the same relative probability as the peak. However, 
by selecting only one (as the inversion is doing), we assign zero probability to the rest of the 
points that belong to the broad peak. On the other hand, by selecting all of the points of the broad 
peak, we are transferring to AR all retrieved quality information; that is, the inversion could not 
find a clear candidate for that particular region of the cost function, but rather a few candidates 
with comparable probability. 

 

Precedent 

At JPL a procedure, based on a multiple solution inversion output (not constrained to four 
solutions) in combination with AR, called DIRTH (Stiles et al., 2002) was developed. It includes 
an initialization technique for the median filter, called the Thresholded Nudging (TN), and a 
multiple solution selection scheme as input to the median filter, called the Direction Interval 
Retrieval (DIR). 

The TN allows for more than two ambiguities in the initialization (see section 1.2.2) and works as 
follows. The probability1 of the cost function is normalized with the probability of rank 1, and the 
number of ambiguities (up to four) with normalized probability above 0.2 is used in the 
initialization. 

The DIR performs AR in the following way. Given a threshold T (0.8), a set of cost function 
points around each of the local maxima (resulting in as many segments as local maxima) is 
selected such that the number of points is minimized and the integral of the cost function over the 
interval of such points is T. Then, AR is performed in the usual manner (except for using the TN 
for initialization), and only the segment of points around the selected ambiguity is further used by 
the median filter (see section 1.2.2). 

                                                           
1 Stiles et al. (2002) use the theoretical relation between MLE and probability, i.e., equation 3, to compute the latter. 
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By examining many wind field cases, we conclude that the DIRTH winds are often very smooth 
and unrealistic in the nadir swath. Here we identify some possible reasons for this result: 

• By applying the median filter only on the segment that was selected in the first place by the 
“traditional” AR, the scheme is subject to the accuracy of the latter. That is, if the traditional 
AR fails in an area and produces the wrong solutions, all the segments used in that area will 
in turn produce a more or less smooth field (probably following some segment extremes, 
depending on the segment width) but wrong. 

• When using a threshold T of 0.8 to define the segments, it may well happen that the 
remaining cost function points that sum a probability of 0.2 (1-T) contain valuable 
information indeed. In particular, if we look at the Pmax - Pmin distributions in the nadir 
swath for 25-km resolution (Figure 6a), we see a relatively poor probability modulation. In 
such region, many cost function points with substantial probability may be left out of the 
segment selection. This will in turn decrease the quality of the wind retrieval. 

The reason for setting such threshold T is to prevent oversmoothing. That is, if we use T=1, all 
data in the cost function will be used by the median filter, which in turn will result in a wind field 
inhibited by the NWP reference and the median filter characteristics. This is due to a very 
important limitation of the median filter AR, which is not explicitly using the relative probability 
of each solution, but rather considering all the solutions with identical probability. Despite the 
mentioned threshold and as already discussed, the resulting wind field is still substantially smooth 
in areas with large solution segments, i.e., the nadir region. Since the median filter does not 
ensure meteorologically balanced fields, the retrieved winds are not only oversmoothed but also 
unrealistic in some (of such) areas. 

 

Alternative 

The 2D-Var AR (see section 1.2.2) explicitly uses the probability of all ambiguous solutions. 
This AR therefore allows the possibility of using as many ambiguous solutions as we desire 
without a substantial risk of oversmoothing. Moreover, since the variational analysis is always 
constrained to spatial consistency and meteorological balance, we can ensure realistic retrieved 
winds by using a scheme based on a multiple solution inversion output in combination with such 
AR. 

Figure 7 shows a QuikSCAT retrieved wind field, using the standard inversion output (up to four 
ambiguous wind solutions) and the 2D-Var AR. In the nadir region, it is clearly discernible that 
the retrieved wind field is spatially inconsistent. Since the 2D-Var analysis field (not shown) is 
spatially consistent, the problem is most likely in the ambiguous solution distribution. 

Figure 8a shows the standard ambiguous solution distribution (MLE cost function minima) for 
the same case of Figure 7. As we can clearly see in the nadir region, the wind solution pattern 
shows almost no solutions in the direction of the mean flow. Therefore, even if the 2D-Var 
analysis field were of acceptable quality, there is no way to select a consistent wind field from 
such solution pattern. 
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Figure 7 QuikSCAT retrieved wind field using the standard inversion output (cost function minima) and the 2D-Var 
AR. The acquisition date is January 15 2002 at 16 hours UTC. The solid lines separate the sweet-left (left side), the 
nadir (middle), and the sweet-right (right side) regions of the QuikSCAT swath. 

Figure 8b shows the multiple ambiguous solution (not constrained to four) distribution again for 
the same meteorological case as Figures 7 and 8a. We show all the cost function solutions with 
probability above a guessed threshold1 of 2x10-7. Notice how often the ambiguous solutions in 
the sweet swath are around the cost function minimum, which is in the direction of the mean 
flow, denoting little ambiguity (main cost function minimum much deeper than the remaining 
minima) in comparison to the nadir swath. Note also that the number of solutions in the nadir 
region is large, indicating lower accuracy (broader minima) than in the sweet swath. In 
comparison with Figure 8a, we are providing much more information content to the AR using the 
multiple solution inversion output. As already discussed, the 2D-Var uses the information in an 
appropriate way (the ambiguous solutions are weighted by their computed probability) and 
therefore, from a theoretical point of view, the multiple solution concept may considerably 
improve the resulting analysis field. Moreover, the AR will now result in a spatially consistent 
wind field since the multiple solution concept does provide solutions aligned with the mean flow 
(see solution distribution in the nadir swath of Figure 8b). [Note: the dots in Figures 7 and 8 
represent quality-controlled points. This issue is discussed more in depth in chapter 3.] 

It seems reasonable to test the multiple solution scheme (MSS) against the standard procedure. 
Since using all the points of the cost function with non-zero probability (up to 144) as solution 
ambiguities for the 2D-Var AR is computationally expensive, we use the mentioned probability 
thresholds, i.e., 10-5 for the standard procedure and 2x10-7 for the MSS, as a first guess. 

                                                           
1 The reason for choosing a different probability threshold in the standard procedure and the MSS is due to the 
normalization of the probability; the former is normalized with up to 4 solutions and the latter with up to 144. 
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                             a) 

 
                             b) 

 

Figure 8 Same as Figure 7 but for QuikSCAT ambiguous wind field using (a) the standard inversion output (cost 
function minima); and (b) the multiple solution scheme. Only solutions with probability above 10-5 (a) and 2x10-7

(b) are shown. 
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2 Comparison between the standard procedure and the MSS 
 

As discussed in section 1.2.2, the 2D-Var background term is a NWP forecast field. The 
QuikSCAT data products distributed by JPL and the National Oceanographic and Atmospheric 
Administration (NOAA) include collocated National Center for Environmental Prediction 
(NCEP) wind information. The latter is used for AR purposes, i.e., as background term. As such, 
a different reference should be used to compare the standard wind retrieval and the MSS 
procedures. In this study, we use ECMWF winds as reference.  

2.1 Statistical results 
 

Three days of QuikSCAT and ECMWF collocated winds at 100-km resolution are used in the 
comparison. Table 5 shows the mean root-mean-square (RMS) of wind vector differences 
between ECMWF and three different wind sources: standard wind retrieval, MSS and NCEP. 
Comparing the standard procedure and the MSS, the latter shows better performance, i.e., 
agreement with ECMWF. As expected, the major difference between the two procedures is in the 
nadir region, where the RMS difference is more than 0.5 m/s lower for the MSS. In the sweet 
swath, the MSS also works better. This is due in part to an improvement at low winds, where low 
cost function modulation is expected, and in part to the improvement of the analysis field, i.e., a 
better 2D-Var analysis in nadir is expected to positively impact the analysis in the sweet regions. 
Indeed, the results (see table 6) indicate better agreement of MSS analysis (compared to standard 
analysis) with ECMWF in both the sweet and the nadir swath. 

Table 5 Mean vector RMS1 (m/s) 

 
Swath region 

Standard 
procedure 

MSS NCEP 

Sweet 2.48 2.23 2.85 

Nadir 2.98 2.45 2.96 
1 The vector RMS is referred to as the RMS of the wind vector difference between 
ECMWF and the different wind sources shown in the table. 

 

Both the standard procedure and the MSS show generally better scores (against ECMWF) than 
NCEP (see table 5). This suggests that 2D-Var is successfully exploiting the observations rather 
than to follow the background (i.e., NCEP). As such, the quality of the background does not 
significantly affect the quality of the retrieved winds. This is also true in the nadir region. As 
discussed in section 1.3, the MSS provides a larger number of equally likely ambiguous solutions 
in the nadir swath, compared to the sweet regions, thus resulting in a larger influence of the 
background term in 2D-Var. However, the impact of NCEP in the nadir is also minor, as seen 
from the substantial difference in vector RMS between the MSS (2.45 m/s) and NCEP (2.96 m/s). 
The observations and the constraints on meteorological balance and spatial consistency are 
therefore the most dominant factors in the retrieval. 
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Table 6 Mean vector RMS1 (m/s) 

 
Swath region 

Standard procedure 
(analysis) 

MSS 
(analysis) 

Sweet 2.14 2.04 

Nadir 2.39 2.24 
1 The vector RMS is referred to as the RMS of the wind vector difference between 
ECMWF and the 2D-Var analysis of the different wind sources shown in the 
table. 

 

Figure 9 shows the two-dimensional histograms of the selected solutions by the standard 
procedure (top plots) and by the MSS (bottom plots) against ECMWF winds, for wind speed (left 
plots) and wind direction (right plots), in the nadir swath. The MSS shows a slight improvement 
in the wind speed accuracy compared to the standard procedure, as denoted by their 
corresponding SD values (see left plots). The main improvement is in wind direction. It is clear 
that the contour lines in Figure 9d are closer to the diagonal than those of Figure 9b. The better 
wind direction accuracy of the MSS is confirmed by the SD scores, where the standard procedure 
is more than 4° higher than the MSS. The fact that the main improvement is in wind direction is 
an expected result since the MSS leaves essentially a larger wind direction choice to the AR 
procedure (i.e., 2D-Var) than the standard procedure. The fact that the MSS choice of wind 
direction also improves the wind speed scores indicates a more consistent selection for MSS. 

The overall results (table 5) show that the difference in wind vector accuracy between the nadir 
and the sweet regions is 20% for the standard procedure, while only 10% for the MSS. This is 
mainly due to the substantial improvement of the MSS in wind direction accuracy at nadir. The 
MSS clearly reduces noise as compared to the standard procedure, due to the spatial smoothing 
constraints, i.e., flow rotation and little divergence, and the improved Jo

scat (equation 10). We now 
further investigate the effect of Jo

scat. 

 

MSS probabilistic behavior 

A way to test the consistency of the MSS is to verify the a priori probabilities of the solutions. 
Figure 10a shows how often a solution with a particular probability value is selected (diamond 
symbols) or is closest to NCEP (star symbols) as a function of probability. Both the x-axis and 
the y-axis are in logarithmic scale. As such, the diagonal denotes a consistent probabilistic 
behavior, i.e., a solution with probability value 10-2 (for example) is expected to be “selected” 1% 
of the time. The closest solution turns out to be probabilistically rather inconsistent as shown by 
the large discrepancy with the diagonal. This essentially means that if the MSS systematically 
selects the closest solution, it would be doing a poor job since it would not correct the differences 
between QuikSCAT and NCEP (background) observing systems, where they exist. The selected 
solution shows a more consistent probability pattern than the closest, especially in the most 
populated region, i.e., probabilities between 10-2 and 10-0.4 (see solid line in Figure 10b), where 
the diamonds clearly follow the diagonal. The reason for this is that many closest-to-NCEP low-
probability solutions are not selected and high-probability solutions are selected instead. This 
indicates that in general 2D-Var is successfully resolving the large number of solutions provided 
by the MSS, thus confirming the small dependency (of the MSS) on the background discussed at 
the beginning of this section. 
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Figure 9 Two-dimensional histogram of the selected wind solution by the standard (top plots) and by the MSS 
(bottom plots) versus ECMWF wind in the nadir region. The left plots correspond to wind speed (bins of 0.4 m/s) and 
the right plots to wind direction (bins of 2.5°). The latter are computed for ECMWF winds above 4 m/s. N is the 
number of data; mx and my are the mean values along the x and y axis, respectively; m(y-x) and s(y-x) are the bias 
and the standard deviation with respect to the diagonal, respectively; and cor_xy is the correlation value between the 
x- and y-axis distributions. The contour lines are in logarithmic scale: each step is a factor of 2 and the lowest level 
(outer-most contour line) is at N/8000 data points. 

A remaining question is what to do with both tails of the distribution, i.e., probabilities below 10-3 
and above 10-0.2 (see solid line in Figure 10b), where the probabilistic behavior is far from being 
consistent. Figure 10b shows the quality of the data (star symbols) as a function of probability. 
Note that the quality is decreasing (i.e., increasing RMS) as we approach the extremes of the 
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distribution1. In particular, below 10-4, the data are of poor quality (close to 4 m/s RMS), 
indicating that the probability threshold of 2x10-7 initially used by MSS (see section 1.3) may be 
increased to improve the quality of the retrievals. This is a QC issue, which will be further 
discussed in chapter 3. 

 
       a)                                                                  b) 

 

Figure 10 (a) Number of times (normalized and in logarithmic scale) that a solution with a particular probability 
value is selected (diamond) or closest to NCEP (star) versus probability (logarithmic scale). (b) Normalized 
histogram of selected solutions (solid line) and mean RMS of vector difference between the selected solutions and 
ECMWF winds (star) versus probability (logarithmic scale). 

 

2.2 Cases 
 

Many meteorological cases were examined in this comparison. In order to better illustrate the 
statistical results of the previous section we show some of these cases here [Note: some 
additional cases are shown in Appendix B]. 

Figure 11 shows the MSS selected wind field for the same poor-quality case as Figures 7 and 8. 
As discussed in section 1.3, in contrast with the standard procedure, the MSS provides solutions 
in the direction of the mean flow in the nadir swath (see Figure 8). As such, a spatially more 
consistent and realistic wind field is found when using the MSS. This is shown in Figures 7 and 
11, especially in the middle of the plot. A few inconsistent wind arrows (probably rain 
contaminated), which should be quality controlled (see discussion on QC at 100-km resolution in 
chapter 3), are still present though. 

                                                           
1 Below probability of 8x10-6 the number of data is very small (see solid line in Figure 10b) and therefore not 
statistically significant, as denoted by the noisy RMS values in the left part of Figure 10. This is also true for 
probability above 10-0.2. 
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Figure 11 Same as Figure 7 but for MSS retrieved wind field. 

 

    a)                                                                           b) 

 

Figure 12 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is 
February 3 2002 at 2 hours UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the sweet-
left (right side) regions of the QuikSCAT swath. 
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Figure 12 shows another interesting case of how the MSS is improving the quality of the 
retrieved wind field in the nadir with respect to the standard procedure. Note the noisy and 
granular wind field over the entire nadir swath in Figure 12a. The MSS (Figure 12b) is 
successfully filtering this noise, keeping at the same time the dynamical information of this case 
(intensity and location of the low-pressure system are the same in both plots). 

Figure 13 shows a low wind speed case. Again, the standard wind field (Figure 13a) shows a 
noisy pattern in the nadir swath, which is successfully filtered by the MSS (Figure 13b). The 

 
    a)                                                                         b) 

 
                                           c) 

 

Figure 13 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field 
(c). The acquisition date is February 3 2002 at 7 hours UTC. The solid lines separate the sweet-right (left side), the 
nadir (middle), and the sweet-left (right side) regions of the QuikSCAT swath. 
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presence of a low-pressure system is better depicted by the MSS. Moreover, the standard wind 
field is also somewhat noisy in the sweet swath, as may be expected from the low cost function 
modulation at low winds (see section 1.3). As shown in Figure 13, the MSS is successfully 
filtering the noise in the sweet swath as well. 

Figure 13c shows the ECMWF wind field. Both the intensity and location of the low-pressure 
system are in disagreement with the observations. The assimilation of a well-defined and spatially 
consistent wind field such as the MSS could help very much to improve ECMWF forecast. 
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3 Need for a Quality control at 100 km resolution 
 

An important aspect of the 100-km product used in this study, which needs to be examined, is the 
QC. Up to now, the 100-km product is using the MLE-based QC at 25-km resolution (KNMI 
QC) developed by Portabella and Stoffelen (2001) in the following way: if there is sufficient 
information on the 100-km WVC after QC (at least half of the 25-km WVCs within the 100-km 
WVC), the wind retrieval is performed. 

 

Problems using 25-km QC in 100-km WVC 

The problem of using a 25-km QC procedure in 100-km WVCs is illustrated in Figure 8 (see 
section 1.3). Figure 8b shows the effects of using the 25-km QC recommended by Portabella and 
Stoffelen (2002b), i.e., KNMI QC1 + JPL rain flag2 in the nadir and only KNMI QC in sweet 
regions, in comparison with Figure 8a, where only the KNMI QC has been applied. On the one 
hand, as reported by Portabella and Stoffelen (2002b), the JPL rain flag is rejecting a 
considerable amount of consistent winds, as seen in the Northern part (nadir region) of the wind 
flow (see WVCs with consistent wind solutions in Figure 8a removed in Figure 8b). On the other 
hand, the 25-km QC (using JPL rain flag) is able to reject several WVCs of poor quality, 
probably rain contaminated (see the nadir region WVCs with inconsistent solution pattern, both 
in speed and direction, in the lower half of Figure 8a, removed in Figure 8b). These poor-quality 
WVCs show zero probability in the direction of the flow (not shown) and therefore it is of great 
importance to identify these cases and reject them, regardless of the solution scheme, i.e., the 
standard procedure or the MSS, we use. However, even if the 25-km QC is able to remove most 
of the poor-quality WVCs, a few of them still remain in Figure 8b (notice the absence of 
solutions aligned with the mean flow in a few nadir WVCs). 

 

Alternatives 

Using the background error spatial structure functions, large discrepancies between the wind 
solutions provided by the MLE inversion and the analysis (i.e., output from variational AR) can 
be interpreted as poor-quality retrieved solutions. After a comprehensive validation, a threshold, 
which relates these discrepancies to the quality of the observations, can be set. This gross error 
check is the so-called variational QC. The inconsistent nadir winds could therefore be rejected 
using this QC. Moreover, in contrast with the JPL rain flag, it would generally keep the consistent 
wind flow. However, the rejection of too many discrepancies with the analysis could lead to a 
retrieved field too close to the background and, as such, not useful in data assimilation, i.e., the 

                                                           
1 The KNMI QC uses the normalized MLE (Rn) information at 25-km resolution to filter poor quality data, i.e. a Rn 
threshold, which maximizes the good quality acceptance and the poor quality rejection, is set. 
2 The rain flag developed by JPL (see Huddleston and Stiles, 2000) looks for the probability of encountering a 
columnar rain rate that is greater than 2km*mm/hr. This probability value is read directly from a table based on 
several input parameters including average brightness temperature (both H-pol and V-pol), normalized inter-view σ° 
difference, wind speed, wind direction relative to along track, and a normalized MLE. The space spanned by these 
parameters can detect whether the set of σº values used in wind retrieval is affected by rain. 
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impact of assimilating observations that are well in agreement with the NWP background is 
expected to be negligible. Consequently, an extensive testing is required prior to using such QC. 

As discussed in section 2.1, the MSS selected solutions with low probability values, i.e., below 
10-4, are of poor quality (see Figure 10b). As such, a more straightforward QC (prior to 
variational analysis) can be set by using a higher probability threshold than the one used  by the 
MSS (i.e., 2x10-7). However, by increasing the probability threshold, we will also decrease the 
number of MSS ambiguous solutions (see section 1.3). This may lead to some additional noise in 
the nadir swath, i.e., the lower the range of solutions the larger the number of cases with no 
solution aligned with the “true” direction. Nevertheless, large discrepancies with the mean flow 
will most generally occur when the observation is of poor quality. Therefore, a variational QC 
could then be used to remove such poor quality cases. 

Another possibility is to set up a QC procedure for 100-km resolution in a similar way as it was 
done for 25 km, i.e., computing Rn (at 100km) and setting an optimal threshold in terms of 
maximum good quality acceptance and poor quality rejection. The 100-km QC would be able to 
reject the 100-km WVCs that despite they contain good-quality 25-km information (after 25-km 
QC), they result in poor-quality 100-km winds; for example, a 100-km WVC crossed by a front 
line, which still contains enough quality controlled 25-km WVCs for wind retrieval. 

A way to avoid a decrease in the number of MSS ambiguous solutions and still remove the 
WVCs that contain low probability selected solutions is to use an appropriate Rn threshold at 
100-km resolution. As it is clear from Figure 14, the Rn increases with decreasing probabilities of 
the selected solution. Since the quality of the data is decreasing with decreasing probabilities 
(Figure 10b), a Rn threshold would not only remove poor quality data (see above discussion on 
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Figure 14 Two-dimensional histogram of the Rn versus probability of the selected solution. The total number of 
data is 50642. The contour lines are in logarithmic scale (two steps corresponding to a factor of 10 in number 
density); the lowest level (outer-most contour line) is at 3 data points. 
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100-km Rn) but also the cases with low probability selected solutions, e.g., a threshold of (let’s 
say) 10 would remove almost all cases with (selected) probability below 10-4 and keep most of 
the cases with probability above 10-4. 

In order to define the best strategy for 100-km QC further investigation of the procedures 
discussed in this chapter is required. A combination of some of these procedures may be more 
appropriate. 
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4 Summary and Conclusions 
 

In this study, a probabilistic approach is used to improve the QuikSCAT retrievals, especially in 
the nadir region, for assimilation purposes into NWP. After the extensive examination of the 
scatterometer and, in particular, the QuikSCAT inversion problems performed by Portabella and 
Stoffelen (2002a), the standard wind retrieval procedure is compared to a new procedure, the so-
called multiple solution scheme, at 100-km resolution. Prior to the comparison, we summarize the 
most relevant issues investigated by Portabella and Stoffelen (2002a): 

In scatterometry, the standard wind retrieval procedure works as follows: the minima of 
the MLE cost function, considered as the ambiguous wind solutions, are in turn used by 
the AR procedure to select the observed wind. In these circumstances, it is shown how the 
shape of the MLE cost function determines the skill of the wind retrieval procedure in 
terms of ambiguity and accuracy. In particular, for QuikSCAT, the shape gradually 
changes with the cross-track location (WVC), thus affecting the retrieval skill of the 
different regions of the swath. In the poor-azimuth-diversity nadir region, where the cost 
function minima are broad, the accuracy of the retrieved winds is substantially lower 
compared to the rest of the swath. The standard wind retrieval procedure is therefore 
further investigated. 

First, and in order to get a more suitable interface between the inversion and the AR 
schemes, the MLE cost function is transformed into a probability cost function, by 
experimentally finding the relation between the MLE and the probability of the “true” 
wind. We use the determined probability function to predict how often a certain solution 
rank corresponds to the “true” solution, using ECMWF winds as reference. The 
correspondence is remarkable, indicating that the solution probability function we found 
is adequate. 

Then, to optimise wind retrieval, the spatial resolution of the retrieved winds is 
investigated. The QuikSCAT 25-km inverted winds are compared to the 100-km winds. It 
turns out that the probability function derived for 25-km is also valid for 100-km 
resolution. The 100-km product, which is less noisy by definition, shows both less 
ambiguity and more accuracy than the 25-km product and, as such, the former is 
recommended for QuikSCAT use in NWP data assimilation. 

The results of the extensive study on the QuikSCAT inversion problem show that in order 
to improve the wind retrieval, notably in the nadir region, more ambiguous wind solutions 
need to be provided to the AR. In order to be successful with a multiple solution concept, 
it is very important to characterize each of the ambiguous wind solutions with its 
corresponding probability of being the “true” wind. Therefore, a median filter AR, in 
which the probability of each solution is not explicitly used in the final selection, is 
inappropriate. We propose to use the multiple solution inversion output in combination 
with a variational analysis AR (i.e., 2D-Var), the so-called MSS. The variational analysis 
AR is not only capable of explicitly using probability for the multiple solutions but also 
ensures spatial consistency and meteorological balance of the retrieved winds. 
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The comparison is performed, using NCEP winds as background term for 2D-Var and ECMWF 
winds as validation reference. The MSS turns out to be more in agreement with ECMWF than the 
standard procedure, especially at nadir. As expected, the MSS wind direction is substantially 
better in nadir, thus validating the procedure proposed. Moreover, the MSS selected solution is, in 
general, probabilistically consistent, whereas the closest-to-NCEP solution is rather inconsistent 
with the a priori set probabilities. In other words, the influence of the background in the retrieved 
field is relatively small. As such, 2D-Var is successfully exploiting the information content of the 
observations. 

Since the ECMWF field used for validation is spatially smooth, it is at this point difficult to 
assess the effect of the background error structure functions in obtaining a smooth analysis. In 
particular for applications other than NWP, it may still be worthwhile to evaluate the effect of the 
spatial filtering by validating different versions of MSS with in-situ data. 

The meteorological cases examined clearly show more spatially consistent and realistic wind 
fields for the MSS than for the standard procedure, especially at nadir. Moreover, the MSS is not 
only acting as a spatial filter, but is also keeping the wind information (e.g., lows, fronts, etc.) 
present in the observations. As such, the multiple solution scheme seems to be more appropriate 
for QuikSCAT data assimilation purposes than the standard scheme. 

The MLE-based QC procedure at 25-km resolution (see Portabella and Stoffelen, 2001; 
Portabella and Stoffelen, 2002b) is not always satisfactory at 100-km resolution. Alternatives for 
such QC are discussed. Similar to the QC at 25-km, a threshold of a 100-km-resolution Rn could 
be set to QC 100-km winds. WVCs with low-probability selected solutions, which are shown to 
be of poor quality, could also be rejected with such Rn threshold. A variational QC is also 
pointed out as an effective way of removing large inconsistencies with the analysis field. 

In this study, the wind retrieval over the QuikSCAT outer regions is not examined. In such 
regions, the azimuth separation (diversity) monotonically decreases as we approach the edges of 
the outer swath. As discussed in section 1.3, the MSS allows a variable number of solutions from 
inversion, according to the level of determination or azimuth diversity, to be used for AR 
purposes. It seems reasonable to apply the same methodology (MSS) to the QuikSCAT outer 
regions. In such regions, there is a substantial ambiguity problem since only two views are 
available. However, as discussed in section 1.1, the accuracy of a two-view system is comparable 
to a three-view (or more) system provided that we use an effective AR procedure. Moreover, the 
variational analysis AR used by the MSS should work significantly better for QuikSCAT than for 
two-view systems such as the SASS on Seasat, since, in the case of QuikSCAT, the large (i.e., 
1400-km wide) and almost unique wind information (i.e., low ambiguity) of the inner swath will 
be extrapolated to the few nodes of the outer regions, while for SASS, the ambiguity problem is 
the same over the entire swath. 

Portabella and Stoffelen (2002c) show that the characteristics of the MLE change with the 
dimension of the measurement space. That is, the MLE distributions of two-view (e.g. 
QuikSCAT outer swath) and four-view (e.g. QuikSCAT inner swath) measurement systems 
differ. This means that the MSS is applicable to the QuikSCAT outer regions, provided that the 
solution probability is re-computed using the outer-swath MLE information and the observation 
term of the AR is tuned to the outer regions. It is also important to say that a comprehensive QC 
is needed to successfully derive winds in the outer regions. Portabella (2002) shows that this is 
not trivial and therefore further investigation is needed to achieve an effective QC in the outer 
region prior to operationally assimilate the QuikSCAT outer-region winds into NWP. 
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Appendix A: MLE norm at 100-km resolution 
 

The MLE, as defined in equation 2 (see section 1.1), can be computed with different norms; for 
example, a measurement error variance (Kp) proportional to the GMF simulated backscatter (σs°) 
or a Kp proportional to the backscatter measurement (σm°). Using a Kp proportional to σs° may 
cause systematic effects in the wind direction solutions (see Stoffelen and Anderson, 1997c). This 
may be less true for a Kp proportional to σm° since the MLE norm remains fixed during the 
inversion process. However, the occurrence of directional biases after inversion depends on the 
measurement configuration (Stoffelen and Anderson, 1997c) and there is no easy way to 
determine what is the best choice; for such purpose, tests are usually conducted. 

A Kp proportional to σs° is used to compute the MLE at 25-km resolution to mimic the JPL 
processing (see equation 2). In this study, however, we compare the standard wind retrieval 
procedure with the MSS at 100-km resolution. Since the MLE norm has not yet been tested at 
low resolution, it is worthwhile to check which Kp, i.e., proportional to σs° or proportional to 
σm°, is best in terms of wind retrieval quality. A set of three days of collocated ECMWF winds is 
used here for reference. 

Figure A.1 shows the wind direction distributions with respect to the satellite flight direction of 
ECMWF winds (solid lines) and QuikSCAT retrieved solutions closest to ECMWF using Kp(σs°) 
(dotted lines) and Kp(σm°) (dashed lines). The left and right plots show the wind direction 
distributions of the sweet and nadir swath, respectively. It is clear from the plots that the 
QuikSCAT retrieved distributions present some unrealistic accumulations (see peaks and troughs 
of both dotted and dashed lines) as compared to ECMWF. Both the Kp(σs°) and Kp(σm°) 
distributions are however very similar, showing that none of them is able to avoid these 
unrealistic wind direction accumulations. 

This result is in line with the RMS difference values between the QuikSCAT (closest to 
ECMWF) and ECMWF wind directions. The RMS difference in wind direction is similar for the 
Kp(σs°) and Kp(σm°) distributions, although slightly lower for the former (see table A.1). On the 
other hand, the RMS difference in speed is slightly lower for Kp(σm°) than for Kp(σs°), leading 
to an overall comparable accuracy. 

 

TABLE A.1 

 RMS in Speed (m/s) 
Kp(σs°) / Kp(σm°) 

RMS in Direction(°) 
Kp(σs°) / Kp(σm°) 

NRMS 
Kp(σs°) / Kp(σm°) 

Sweet swath 1.43 / 1.39 18.88 / 19.08 0.3612 / 0.3478 

Nadir swath 1.57 / 1.56 22.04 / 22.39 0.4209 / 0.3278 
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Figure A.1 Wind direction (with respect to the satellite flight direction) histograms of ECMWF winds (solid lines) 
and QuikSCAT-retrieved solutions closest to ECMWF using Kp(σs°) (dotted lines) and Kp(σm°) (dashed lines) for the 
sweet swath (a) and the nadir swath (b). 

 

Tables A.2 to A.5 show the percentage of “selected” solutions (closest to ECMWF) stratified by 
number of solutions and rank (same stratification as tables in section 1.2). Tables A.2 and A.3 
correspond to the Kp(σs°) selected solution distributions of the sweet and nadir swath, 
respectively. Tables A.4 and A.5 correspond to the Kp(σm°) selected solution distributions of the 
sweet and nadir swath, respectively. 

As discussed in section 1.1.2, the 1st rank skill shows the ambiguity or uncertainty of the 
inversion. In these tables, the 1st rank skill is shown by the percentage of selections of rank 1 
solution. As we see in the tables, the overall 1st rank skill (last column of the tables) is the same 
for both Kp(σs°) and Kp(σm°) in the entire inner (sweet + nadir) swath . However, the number of 
solutions given by the Kp(σm°) is significantly smaller than the number given by Kp(σs°) in both 
the sweet and nadir swath (see the relatively smaller accumulation of data for 2, 3 and 4 solutions 
of Kp(σm°) tables compared to Kp(σs°) tables). As such, the Kp(σm°) produces a less ambiguous 
wind product than the Kp(σs°). 

Stoffelen et al. (2000) computed a more realistic RMS difference in wind direction, called the 
normalized RMS (NRMS). In using the usual wind direction difference RMS definition, the more 
ambiguous solutions are provided by the inversion, the smaller the RMS will be, because the 
chance that one of the solutions will be close to the wind reference will increase. In the limit of an 
infinite amount of observations, the RMS will even be zero, while the information content of the 
set of solutions in reality decreases with an increasing number of solutions, because there is no a 
priori way to say which of the solutions is the correct one. In order to solve this problem, they 
normalize the RMS with an expected value, which is dependent on the angle separation of the 
neighboring solutions of the closest solution to reference (ECMWF in this case). For more 
details, see Stoffelen et al. (2000). If we compute the NRMS, we get substantially lower values 
for the less ambiguous Kp(σm°) product than for Kp(σs°) (see table A.1). 
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Table A.2 Solution distribution for Kp(σs°) (sweet swath). 
 1 Solution 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 39041 41167 16413 5847 102468 

Rank 1 100 89 82 73 91 

Rank 2 - 11 12 17 8 

Rank 3 - - 5 6 1 

Rank 4 - - - 5 0 

Table A.3 Solution distribution for Kp(σs°) (nadir swath). 
 1 Solution 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 24269 22032 3665 738 50704 

Rank 1 100 71 75 50 85 

Rank 2 - 29 15 18 14 

Rank 3 - - 9 15 1 

Rank 4 - - - 16 0 

Table A.4 Solution distribution for Kp(σm°) (sweet swath). 
 1 Solution 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 43650 38950 14957 4915 102472 

Rank 1 100 88 82 69 91 

Rank 2 - 12 13 18 8 

Rank 3 - - 5 7 1 

Rank 4 - - - 6 0 

Table A.5 Solution distribution for Kp(σm°) (nadir swath). 
 1 Solution 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 26348 20946 2545 865 50704 

Rank 1 100 71 67 46 85 

Rank 2 - 29 21 24 14 

Rank 3 - - 12 15 1 

Rank 4 - - - 14 0 
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In summary, the Kp(σm°) provides a less ambiguous product than Kp(σs°) without decreasing the 
quality of the wind retrieval. In other words, in comparison with Kp(σs°), Kp(σm°) is capable of 
removing a significant amount of unrealistic ambiguous wind solutions. Consequently, the 
Kp(σm°) norm will be used for deriving QuikSCAT winds at 100-km resolution. 

Finally, it is worthwhile to mention that a fixed (constant) norm has been successfully used to 
invert ERS winds (Stoffelen and Anderson, 1997c). The use of such MLE norm has not yet been 
tested for SeaWinds but is recommended to be tested. 
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Appendix B: Meteorological cases  
 

Following the discussion on several meteorological cases presented in section 2.2, we include 
some additional cases in this appendix. 

Figure B.1 shows a high-pressure system in the middle of the plot. Note in Figure B.1a that the 
standard procedure is successfully retrieving the wind field, showing spatially consistent and 
realistic winds. Figure B.1b is very similar to Figure B.1a, indicating that whenever the standard 
procedure is successful, the MSS wind field does not change much. Moreover, the wind front line 
present at the top left part of Figure B.1a is also visible in Figure B.1b, indicating that the MSS 
successfully keeps the dynamical information of the observations without significantly 
oversmoothing the retrieved field. 

 

    a)                                                                            b) 

 

Figure B.1 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is 
February 2 2002 at 19 hours UTC. The solid lines separate the sweet-left (left side), the nadir (middle), and the sweet-
right (right side) regions of the QuikSCAT swath. 
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Figure B.2 shows another situation where the standard procedure shows some noisy winds in the 
nadir swath (see Figure B.2a). As expected, the MSS (Figure B.2b) is successfully filtering the 
remaining noise (without oversmoothing), improving the quality of the retrieved field compared 
with the standard procedure (Figure B.2a). 

Figure B.3 presents a high wind speed case. Both the standard procedure and the MSS present 
several spatially inconsistent wind arrows in the vicinity of the low-pressure system (see bottom 
of Figures B.3a and B.3b). However, it is clear that the low is better resolved by the MSS (Figure 
B.3b) than by the standard procedure (Figure B.3a). Note also that this is an interesting case for 
data assimilation into NWP since ECMWF (Figure B.3c) does not accurately predict the intensity 
and position of the low (see for example, the difference of wind speed between the top plots and 
the bottom plot). 

 

    a)                                                                            b) 

 

Figure B.2 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is 
February 2 2002 at 12 hours UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the 
sweet-left (right side) regions of the QuikSCAT swath. 



Appendix B. Meteorological cases 45 

 

 

 

 
    a)                                                                            b) 

 
                                           c) 

 

Figure B.3 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field 
(c). The acquisition date is February 2 2002 at 20 hours UTC. The solid lines separate the sweet-left (left side), the 
nadir (middle), and the sweet-right (right side) regions of the QuikSCAT swath. The dots represent QC WVCs. 
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    a)                                                                            b) 

 
                                           c) 

 

Figure B.4 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field 
(c). The acquisition date is February 3 2002 at 2 hours UTC. The solid lines separate the sweet-right (left side), the 
nadir (middle), and the sweet-left (right side) regions of the QuikSCAT swath. The dots represent QC WVCs. 
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Figure B.4 shows a dynamically active case in the Tropics. Note that the low wind speed area 
(bottom part of the plots) is better resolved by the MSS (Figure B.4b) than by the standard 
procedure (Figure B.4a). The wind flow in that area is not only more spatially consistent in the 
former but also more realistic. Note again, the wind flow difference between ECMWF (Figure 
B.4c) and QuikSCAT (Figures B.4a and B.4b) in the high wind speed region (center-top part of 
the plots); both the speed and direction are substantially different, showing once more the 
potential positive impact of assimilating QuikSCAT data in mesoscale NWP models. 
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