

# **CWDP** Top Level Design

CFOSAT Wind Data Processor

Version 1.0 Date: 23/08/2021

> Zhen Li, Anton Verhoef, Ad Stoffelen KNMI, De Bilt, the Netherlands





| Change record |            |               |                                                       |  |
|---------------|------------|---------------|-------------------------------------------------------|--|
| Version       | Date       | Author        | Remarks                                               |  |
| 1.1.1         | 09-02-2018 | Zhen Li       | Initial draft                                         |  |
| 1.1.2         | 13-02-2018 | Anton Verhoef | Review                                                |  |
| 1.1.3         | 13-02-2018 | Zhen Li       | Revision                                              |  |
| 1.1.4         | 20-02-2018 | Jur Vogelzang | Review                                                |  |
| 1.1.5         | 22-02-2018 | Zhen Li       | Revision                                              |  |
| 0.9           | 21-03-2018 | Anton Verhoef | For pre-check beta release                            |  |
| 0.9.01        | 02-05-2018 | Anton Verhoef | Modified according to comments from release pre-check |  |
| 1.0           | 18-05-2021 | Zhen Li, AV   | For v1.0 release, pre-checked                         |  |
| 1.0.01        | 23-08-2021 | Anton Verhoef | Modified according to DRR RIDs                        |  |

#### Table of contents

| 1. Introduction                                                       | 4 |
|-----------------------------------------------------------------------|---|
| 1.1 User requirements                                                 | 4 |
| 1.2 Conventions                                                       | 4 |
| 2. L2A processor design                                               | 6 |
| 2.1 Top level design                                                  | 6 |
| 2.2 Layered model structure                                           | 8 |
| 2.3 Data structure                                                    | 2 |
| 3. CWDP design                                                        | 4 |
| 3.1 Top level design1                                                 | 4 |
| 3.1.1 Main program1                                                   | 4 |
| 3.1.2 Layered model structure1                                        | 5 |
| 3.1.3 Data structure, quality flagging and error handling, verbosity1 | 7 |
| 3.2 Module design for genscat layer1                                  | 8 |
| 3.2.1 Module <i>bufr2nc</i>                                           | 8 |
| 3.2.2 Module <i>bufr_data_extraction_module</i> 1                     | 8 |

| 3.3 Module design for process layer |    |
|-------------------------------------|----|
| References                          |    |
| Appendix A: Acronyms                | 21 |

### 1. Introduction

The CFOSAT Wind Data Processor (CWDP) is a software package written mainly in Fortran 90. It has some parts written in C for handling HDF5, NetCDF and BUFR data formats. CWDP is intended to be a generic wind processor for Ku band rotating fan beam scatterometer data. It can be adapted to handle data from future instruments such as WindRAD. This document is the Top Level Design (TLD) of the CWDP software package including module design. Section 2 describes the general design of the CWDP software. Section 3 describes the individual modules that are part of CWDP.

More information about CWDP as well as L2A processor can be found in [1], [2]. The User Manual (UM) [1] and Product Specification (PS) [2] provide sufficient information for a user who wants to apply the CWDP as a black box. This TLD document gives more specific information on how the processing is done and is of interest to more experienced users.

The model is designed as layered model structure. The purpose of this structure is to separate the generic scatterometer processing from the specific Ku-band rotating fan beam processing. The first layer is defined as the rotating fan beam processing layer and the second layer is defined as the generic scatterometer processing layer (in genscat).

#### **1.1 User requirements**

According to the NWP SAF Development Procedures for Software Deliverables [4], user requirements must be subject to review before the start of development, to ensure planned developments are relevant and respond to user requirements. The development of CWDP was motivated by the OSI SAF requirement to have a processor capable of processing CFOSAT level 1 data into wind products. The CFOSAT wind products need to fulfill the requirements specified in the OSI SAF Product Requirements Document in terms of product quality and timeliness. These requirements are the basis for CWDP development and they are detailed in the traceability matrix in the CWDP Test Plan and Test Report [5].

### **1.2** Conventions

Names of physical quantities (e.g., wind speed components *u* and *v*), modules (e.g. *BufrMod*), subroutines and identifiers are printed italic.

Names of directories and subdirectories (e.g. cwdp/src), files (e.g. cwdp.F90), and commands (e.g. cwdp -f input) are printed in Courier. Software systems in general are addressed using the normal font (e.g. CWDP, genscat).

Hyperlinks are printed in blue and underlined (e.g. https://scatterometer.knmi.nl/).

### 2. L2A processor design

### 2.1 Top level design

The L2A processor cfosat\_l1b\_l2a and cfosat\_hdf2bufr are Unix (Linux) executables which process the L1B data. The final output data is in BUFR format and NetCDF format. The user may provide arguments and parameters according to Unix command line standards and those options are described in [2]. When executed, the L2A processor logs information on the terminal screen. The baseline of processing is shown in Figure 1. The arguments given at the command line are processed by the genscat module *Compiler\_Features*. The first part of the processor (cfosat\_l1b\_l2a) is to assign the slices onto proper WVCs with their attached information and write into HDF5 output. The second part of the processor (cfosat\_hdf2bufr) is to aggregate the information of the slices in the WVC into views. The reason of writing into HDF5 file first and then converting into BUFR file is to keep the process consistent with other types of scatterometers. After HDF5 is converted to BUFR, the BUFR output can be converted into NetCDF format.



Figure 1 Baseline of the L2A processor (above the red line is the 1<sup>st</sup> part cfosat\_l1b\_l2a, below the red line and above the green line is the 2<sup>nd</sup> part cfosat\_hdf2bufr).

#### **2.2** Layered model structure

The L2A processor is a Fortran90 software package with a number of Fortran90 modules and routines. It is set up from two layers. The first one is the process layer and the second one is the generic scatterometer processing layer (genscat).

Table 1 shows the process layer of the processor cfosat\_l1b\_l2a and Table 2 shows the modules in genscat used by cfosat\_l1b\_l2a. Table 3 shows the process layer of the processor cfosat\_hdf2bufr and Table 4 contains the modules in genscat used by cfosat\_hdf2bufr. Table 5 shows the modules in genscat used for converting BUFR to NetCDF. The calling trees for cfosat\_l1b\_l2a and cfosat\_hdf2bufr are shown in Figure 2 and Figure 3.

| Module/routine name    | Tasks                          | Comments              |  |
|------------------------|--------------------------------|-----------------------|--|
| cwdp_data              | Definition of data structure   |                       |  |
| constant               | Define types and constants     | L1B type and L2A type |  |
| asc2sec                | Convert time in character      |                       |  |
|                        | string to Julian seconds       |                       |  |
| group_sigma0           | Assign the L1B slices onto     |                       |  |
|                        | proper WVCs and aggregate      |                       |  |
|                        | them to views                  |                       |  |
| compute_orbit_elements | Get frame time and frame       | Used in group_sigma0  |  |
|                        | ephemeris data, calculate and  |                       |  |
|                        | return the following           |                       |  |
|                        | instantaneous orbit elements:  |                       |  |
|                        | Nodal Period, Longitude of     |                       |  |
|                        | Ascending Node, Orbit          |                       |  |
|                        | Inclination, Orbital Major     |                       |  |
|                        | Axis, and Orbit Eccentricity.  |                       |  |
|                        | These elements combined        |                       |  |
|                        | with the sigma0 cell longitude |                       |  |
|                        | and latitude are used by       |                       |  |

Table 1 L2A processor modules and routines (cfosat\_l1b\_l2a).

| Module/routine name     | Tasks                                              | Comments |
|-------------------------|----------------------------------------------------|----------|
|                         | sws_ijbin                                          |          |
| sws_ijbin               | Utilizes the orbit elements Called in group_sigmal |          |
|                         | calculated by                                      |          |
|                         | compute_orbiteElements and                         |          |
|                         | maps every                                         |          |
|                         | measurement into sub-track                         |          |
|                         | coordinates                                        |          |
| sec2asc                 | Convert Julian seconds to a                        |          |
|                         | character string containing                        |          |
|                         | year, day, hour, minute,                           |          |
|                         | second                                             |          |
| reverse_cell_index      | Reverse cell index to be                           |          |
|                         | consistent with ISRO                               |          |
| reverse_num_sig_in_cell | Reverse the number of sigma0                       |          |
|                         | in cell                                            |          |
| write_l2a               | Write L2A output into HDF5                         |          |
|                         | format                                             |          |

Table 2 genscat process modules used in cfosat\_l1b\_l2a.

| Module             | Tasks                | Comments           |
|--------------------|----------------------|--------------------|
| DateTimeMod        | Convert year, month, | JulianDay is used. |
|                    | day to Julian day    |                    |
| Compiler_Features  | Handling command     |                    |
|                    | line arguments       |                    |
| HDF5Mod            | Create HDF5 files    |                    |
| NetcdfReaderWriter | Read NetCDF files    |                    |

| Module/routine nar | ne Tasks               | Comments                                   |
|--------------------|------------------------|--------------------------------------------|
| cwdp_data          | Definition of data     |                                            |
|                    | structures             |                                            |
| cwdp_bufr          | BUFR file handling     | Interface to genscat/support/bufr          |
| cwdp_prepost       | Quality control        | Only write_properties is used here         |
|                    | Atmospheric            | to obtain and write some properties of the |
|                    | attenuation            | last row in the file                       |
|                    | Post processing        |                                            |
|                    | Monitoring             |                                            |
|                    | Clean up               |                                            |
| get_l2a_data       | Retrieve L2A data into |                                            |
|                    | the row structure and  |                                            |
|                    | aggregate slice level  |                                            |
|                    | data to WVC level      |                                            |
| add_slice_to_wvc   | Add slice data to WVC  | Called by get_l2a_data                     |
|                    | view for aggregate     |                                            |

Table 3 L2A processor modules and routines (cfosat hdf2bufr).

Table 4 genscat process modules used in cfosat\_hdf2bufr.

| Module            | Tasks                      | Comments |
|-------------------|----------------------------|----------|
| Compiler_Features | Handling command line      |          |
|                   | arguments                  |          |
| HDF5Mod           | Create HDF5 files          |          |
| numerics          | Convert dB to linear scale |          |
|                   | and linear scale to dB     |          |
| DateTimeMod       | Convert day to Julian date |          |

 Table 5 genscat process modules used for convert BUFR to NetCDF.

| Module             | Tasks        |           | Comments |
|--------------------|--------------|-----------|----------|
| bufr2nc_cfosat_L2A | Convert BUFR | format to |          |

#### NetCDF format



Figure 2 Calling tree for cfosat 11b 12a.





Figure 3 Calling tree of cfosat\_hdf2bufr.

### 2.3 Data structure

The data structure of L2A output is organized in WVCs for each row. For one WVC, the geometry data, sigma0, etc. of each view are stored. The L2A data structure is illustrated in Figure 4.



Figure 4 Data structure illustration of L2A.

### 3. CWDP design

In this chapter, the design of the CWDP software package is described in detail. Section 3.1 is a summary of this software and the readers who are interested in every detail of the software are recommended to read the complete chapter as well as the documentation within the code.

#### 3.1 Top level design

#### **3.1.1 Main program**

The main program CWDP (file cwdp in the cwdp/src directory) is a Unix (Linux) executable which processes CFOSAT RFSCAT (Rotating Fan-beam SCATterometer) Ku-band L2A BUFR files. The output is in BUFR format and can be converted to NetCDF format. The specifications of the output are in [1]. The user may provide arguments and parameters according to Unix command line standards and the available options are described in [1]. When executed, the CWDP logs information on the terminal screen, and the log information detail level can be set with the verbosity flag.

The baseline of processing is shown in Figure 5 and some of the steps might be skipped according to the command line arguments chosen by the user . The arguments given at the command line are first processed with the genscat *Compiler\_Features* module. Then CWDP reads in the L2A BUFR input and maps it to the CWDP data structure (see section 3.1.3). A pre-processing and checking of the input data are done, followed by reading in atmospheric attenuations. The atmospheric attenuations are read from a table of climatologic values. Ocean calibration is also a look up table that can be read in by the software. The ECMWF GRIB data (wind forecasts, land-sea mask and sea surface temperature) are read in and they are collocated with the WVCs. The inversion and the ambiguity removal on WVC are the following steps. Post-processing does some conversions and monitoring. Finally, the output data are written into BUFR format and the BUFR format can be converted into NetCDF format for standardized distribution.

The different steps in the baseline are corresponding directly to different modules and those modules are largely adopted from PenWP [1] (see section 3.3).



Figure 5 Baseline of CWDP.

#### 3.1.2 Layered model structure

CWDP is a Fortran 90 software package consisting of several Fortran 90 modules and they are linked after their individual compilation. With the same layer concept as the L2A processor, CWDP contains two layers to separate the generic scatterometer processing software and Ku-band RFSCAT software. The first layer is the process layer containing the modules which are used in the main processing. This layer is adapted from PenWP. The second layer is the generic scatterometer processing layer. Details of these two layers can be found in 3.3 and 3.2. The modules serving the main steps in the first layer are listed in Table 6. Each module contains one or more tasks and those tasks are elaborated in section 3.3.

| Module name    | Tasks                     | Comments                               |
|----------------|---------------------------|----------------------------------------|
| cwdp_data      | Definition of data        |                                        |
|                | structures                |                                        |
| cwdp_bufr      | BUFR file handling        | Interface to                           |
|                |                           | genscat/support/bufr                   |
| cwdp_prepost   | Quality control           | Usability of input data is determined  |
|                | Atmospheric attenuation   |                                        |
|                | Post processing           | Setting of flags                       |
|                | Monitoring                |                                        |
|                | Clean up                  | De-allocate memory                     |
| cwdp_grib      | GRIB file handling        | Interface to                           |
|                | Collocation of GRIB data  | genscat/support/grib                   |
|                |                           | GRIB data are interpolated w.r.t. time |
|                |                           | and location                           |
| cwdp_calibrate | Perform ocean calibration |                                        |
| cwdp_inverion  | Inversion                 | Interface to genscat/inversion         |
| cwdp_ambrem    | Ambiguity removal         | Interface to genscat/ambrem            |

**Table 6** CWDP process modules (adapted from PenWP [3]).

The second layer is the genscat layer. The genscat module classes (i.e., group of modules) used in the CWDP package are listed in Table 7. The genscat package is a set of generic modules which are used in different scatterometer processors and it also can be used for other processing purposes such as the L2A processor. A brief description of the main modules used in CWDP is given in section 3.2. The genscat layer has a few modifications to adapt to CWDP configurations and those modifications are described in section 3.2. The major part is consistent with PenWP. The most important module classes are elaborated: the inversion step ([3] section 3), the ambiguity removal step ([3] section 4), the BUFR file handling ([3] section 6), the GRIB file handling ([3] section 7).

In addition, genscat contains a large support class to convert and transform meteorological, geographical, and time data, to handle file access and error messages, sorting, and to perform more complex numerical calculations on minimization and Fourier transformation. Many routines are co-developed for ERS, ASCAT and SeaWinds data processing.

| Module    | Tasks          | Description                                  |  |  |
|-----------|----------------|----------------------------------------------|--|--|
| class     |                |                                              |  |  |
| Ambrem    | Ambiguity      | 2DVAR and other schemes                      |  |  |
|           | Removal        |                                              |  |  |
| Inversion | Wind retrieval | Inversion in one cell                        |  |  |
| IceModel  | Ice screening  | Uses ice line and wind cone for ice          |  |  |
|           |                | discrimination                               |  |  |
| Support   | BUFR support   | BufrMod, based on ECMWF library              |  |  |
|           | HDF5 support   | Reading of HDF5 files                        |  |  |
|           | NetCDF support | Writing NetCDF files                         |  |  |
|           | GRIB support   | gribio_module, based on ECMWF library        |  |  |
|           | FFT,           | Support for 2DVAR                            |  |  |
|           | minimization   | Print error messages                         |  |  |
|           | Error handling | Finding, opening and closing free file units |  |  |
|           | File handling  | Conversion of meteorological quantities      |  |  |
|           | Conversion     | Sorting of ambiguities to their probability  |  |  |
|           | Sorting        | General purpose                              |  |  |
|           | Date and time  |                                              |  |  |
| tools     | BUFR to        | Convert BUFR format of L2A and L2B           |  |  |
|           | NetCDF         | data to NetCDF format                        |  |  |
|           | conversion     |                                              |  |  |

 Table 7 genscat module classes.

#### 3.1.3 Data structure, quality flagging and error handling, verbosity

The data structure is kept the same as the output of PenWP ([3] section 2.1.3). The differences are: firstly, the CWDP output of each WVC contains a flexible number of views while PenWP output of each WVC contains a fixed number of four views; secondly, because of the flexible number of views, the BUFR table is adapted for CWDP and new entries are added which can hold a maximum number of 18 beams instead of four. Quality flagging and error handling is described in [3] section 2.1.4. and verbosity handling is described in [3] section 2.1.5.

#### 3.2 Module design for genscat layer

The process layer consists of the modules cwdp\_data, cwdp\_bufr, cwdp\_prepost, cwdp\_calibrate, cwdp\_grib, cwdp\_inversion, cwdp\_icemodelF and cwdp\_ambrem. The routines present in these modules are consistent with the modules in PenWP [3] section 2.3 except for a few modules which are described in 3.2.1 and 3.2.2.

#### 3.2.1 Module *bufr2nc*

The module bufr2nc is used in two locations:

 $genscat/tools/bufr2nc\_cfosat\_L2A \ and$ 

genscat/tools/bufr2nc\_cfosat\_L2B. The retrieved information from L2A BUFR and L2B BUFR are different, so the module bufr2nc located at different locations are adapted to L2A output and L2B output separately to convert BUFR to NetCDF. They are only used after all the processing is completed.

#### 3.2.2 Module *bufr\_data\_extraction\_module*

The module *bufr\_data\_extraction\_module* provides an easier way to extract the parameters from BUFR data. The module locates at genscat/tools/bufr\_l2\_reader. It is used in module *bufr2nc* in both L2A and L2B conversion.

#### **3.3 Module design for process layer**

The processing layer contains a number of modules *cwdp\_data, cwdp\_bufr, cwdp\_grib, cwdp\_prepost, cwdp\_inversion, cwdp\_icemodel (not implemented)* and *cwdp\_ambrem*. They are all adopted from PenWP, so only changes are presented in the report (Table 8) and the other details are in [3] section 2.3.

| Table 8  | The  | adaptions | from | PenWP     | to CWDP. |
|----------|------|-----------|------|-----------|----------|
| I HOIC O | 1110 | uduptions | nom  | 1 011 001 |          |

| Module name  | Adaption                               |                             |
|--------------|----------------------------------------|-----------------------------|
|              | CWDP                                   | PenWP                       |
| cwdp_data    | max_beams = 18                         | max_beams = 4               |
|              | max_grib_files=55                      | max_grib_files=25           |
|              | sat_id_cfosat=802                      |                             |
|              | <pre>sat_instr_cfosat=943</pre>        |                             |
|              | software_version=1003                  | software_version=2001       |
|              | Add variable nr_of_beams               |                             |
| cwdp_bufr    | BUFR table D uses data                 | BUFR table D uses data      |
|              | descriptor 3 12 034                    | descriptor 3 12 028         |
|              | num_descriptors=328                    | num_descriptors=118         |
| cwdp_grib    | none                                   | none                        |
| cwdp_prepost | Add is_cfosat and sat_id_cfosat        |                             |
|              | Add option <u>filter</u> for selecting |                             |
|              | WVCs to the output (e.g. exclude       |                             |
|              | outer swath)                           |                             |
|              | The way to set                         |                             |
|              | wvc_quality%qual_sigma0                |                             |
|              | modified due to the changing           |                             |
|              | number of views in each WVC            |                             |
|              | Number of WVC per row is 42            | Number of WVC per row is 76 |

### References

- Z. Li, A. Verhoef, A. Stoffelen, "CWDP User Manual and Reference Guide," SAF/OSI/CDOP3/KNMI/TEC/MA/320, 2021
- [2] Z. Li, A. Verhoef, A. Stoffelen, "CWDP L2A processor Specification and User Manual," SAF/OSI/CDOP3/KNMI/TEC/MA/319, 2021
- [3] A. Verhoef, J. Vogelzang, J. Verspeek, and A. Stoffelen, "PenWP Top Level Design", 2017.
- [4] "NWP SAF Development Procedures for Software Deliverables", NWPSAF-MO-SW-002, EUMETSAT NWP SAF 2016
- [5] Z. Li, A. Verhoef, and A. Stoffelen, CWDP Test Plan and Test Report", SAF/OSI/CDOP3/KNMI/TEC/PL/322, 2021

## **Appendix A: Acronyms**

| BUFR    | Binary Universal Form for the Representation of data                       |
|---------|----------------------------------------------------------------------------|
| CFOSAT  | China-France Oceanography SATellite                                        |
| CWDP    | CFOSAT Wind Data Processor                                                 |
| ECEF    | Earth Centered Earth Fixed                                                 |
| ECI     | Earth Centered Inertial                                                    |
| ECMWF   | European Centre for Medium-Range Weather Forecasts                         |
| GRIB    | GRIdded Binary or General Regularly-distributed Information in Binary form |
| HDF5    | Hierarchical Data Format version 5                                         |
| ISRO    | Indian Space Research Organization                                         |
| L2A     | Level 2-A                                                                  |
| L2B     | Level 2-B                                                                  |
| lat     | latitude                                                                   |
| lon     | longtitude                                                                 |
| NetCDF  | Network Common Data Form                                                   |
| PenWP   | Pencil-beam Wind Processor                                                 |
| PS      | Product Specification                                                      |
| SGP4    | Simplified General Perturbations 4                                         |
| TLD     | Top Level Design                                                           |
| UCAR    | University Corporation for Atmospheric Research                            |
| UM      | User Manual                                                                |
| UNIDATA | a member of the UCAR Community Program                                     |
| WVC     | Wind Vector Cell                                                           |