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General 
This document is written for all users of Numerical Weather Prediction Satellite 

Application Facility (NWP SAF) scatterometer wind processors or Ocean and Sea Ice (OSI) 
SAF wind products. It gives the state of the art concerning scatterometer wind error 
characteristics in terms of resolution, bias, and accuracy, and contains recommendations how 
to correct for biases. The authors hope that this will help the user community to exploit the 
potential of scatterometer wind data as much as possible. They much appreciate feedback. 

 Within the NWP SAF software is made for processing scatterometer data over the 
open ocean to ocean vector winds. This software is freely available upon registration, and is 
also used in the OSI SAF to produce near-real-time ocean vector wind products. 

 It has been demonstrated that the SAF scatterometer winds are accurate and reliable. 
Yet, as every measured quantity, these products have their particular error characteristics. 
Long term monitoring is needed to reveal these characteristics, and this is part of the tasks of 
the NWP SAF and OSI SAF project teams. Correction for biases in scatterometer winds is 
considered to be the responsibility of the OSI SAF and performed according to requirements 
from the broad user community, extending beyond NWP users. For example, requirements are 
expressed within EUMETSAT user meetings or the International Ocean Vector Winds 
Science Team (IOVWST).  

 Several reasons may exist why users wish to perform further bias correction: 
• The SAF product specifications for product quality are inadequate, for example, a user 

may wish to use a different spatial sampling, corresponding to a different accuracy and 
bias (wind biases are resolution dependent); 

• The SAF winds are biased with respect to a particular NWP model wind climate, which 
the scatterometer winds are blended with or assimilated in for a particular user application 
or service. 

Introduction 
This guidance document addresses how systematic differences between NWP models 

and scatterometer wind observations, further referred to as biases, may be estimated and 



corrected. These biases are relevant for NWP data assimilation. The purpose of data 
assimilation is to find a model state that gives the best match between the most recent model 
prediction and the observations that became available since the forecast was produced. This 
state is called the analysis. Modern assimilation techniques as Kalman filtering, 3DVar, and 
4DVar require as good as possible estimates for the random error characteristics of both 
model and observations, since the error variances determine the relative weight of each of the 
information sources in the analysis. These techniques are based on BLUE, Best Linear 
Unbiased Estimates, and therefore do not deal with biases, either constant or variable.  

Biases can be detrimental for NWP impact, e.g., it is well known that biases in wind 
climate and the particular sampling of a scatterometer in space and time may cause artificial 
and unwanted interference patterns (waves) in the wind field. Also, negative impacts may 
occur by decelerating or accelerating flows and thereby filling in or intensifying atmospheric 
disturbances or lows. It is therefore important to correct for biases with respect to the NWP 
model wind climate. Note that bias correction schemes for satellite radiances are common in 
data assimilation to facilitate BLUE by providing consistent satellite and NWP model data; 
see Dee (2005) and references therein or Dee and Uppala (2008). In practice best results are 
obtained when the observations are corrected to fit the model wind climate, even when the 
biases are caused by model imperfections: consistency appears to be generally more important 
than absolute calibration in NWP dynamics. 

Biases in scatterometer observations are studied in detail (e.g., Stoffelen, 1998b; 
Vogelzang et al., 2011). Moored buoys are generally taken as calibration target to establish 
“surface truth”. This does not mean that biases of scatterometer winds against all NWP 
models will be minimized in this way. In the next sections we discuss what scatterometer 
winds and NWP winds represent and how these different representations may lead to biases 
w.r.t. the buoys. We specifically address so-called pseudo biases due to differences in spatial 
representation of NWP model, scatterometer and buoy winds. Moreover, biases may change 
with wind speed, time, atmospheric stratification, etc.  

What does a Scatterometer wind represent? 
A scatterometer is a radar instrument that measures the radar cross section of a portion 

of the Earth’s surface (for spaceborne scatterometers typically of size 25 km × 25 km) from a 
number of incidence and/or azimuth angles and/or polarizations. The radar cross section, σ 0, 
is a surface property and a measure for the fraction of incident radar radiation scattered back 
under given azimuth and incidence angle. It is measured by a scatterometer antenna with 
known antenna gain pattern and distance between radar and scattering surface. 

There are two ways of modeling σ0 as a function of the other parameters: empirical 
and fundamental. In the fundamental approach wave generation by wind and radar backscatter 
from the ocean surface are modeled to yield σ0. The empirical approach assumes some form 



of σ0 as a function of the other parameters with a number of coefficients that are fitted to the 
observations. The outcome of the two approaches is the same: a prescription of how to 
calculate σ0 as a function of wind speed and direction, measurement geometry, radar 
properties, etc. This function is called the Geophysical Model Function (GMF). The empirical 
approach has two main advantages over the more fundamental approaches (given the present 
state of the fundamental algorithms): the radar cross section is calculated faster and it is 
calculated more accurate. This makes the empirical approach better suited for applications. 

The radar cross section Geophysical Model Function is defined as 

( )λθφσ ,,,,100 pUGMF N=         (1) 

with U10N the equivalent neutral wind speed, φ  the wind direction w.r.t. beam pointing 
azimuth ϕ, θ  the beam incidence angle, p the radar beam polarization and λ the microwave 
wavelength. An example is shown in figure 1. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Ku-band radar cross section at vertical polarization as a function of the angle between wind 
and radar look direction for various wind speeds at an incidence angle of 40°  

(courtesy Z. Jelenak). 

 

The GMF for ASCAT is called CMOD. The current version is CMOD5NA and 
CMOD6 is under development. The radar cross section measurements typically have errors of 
5%, while ϕ, θ, p, and λ are known very accurately. Given radar cross section data at multiple 
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azimuths as measured by a scatterometer, the GMF is inverted to compute the local wind 
vector (or wind vector probability distribution; see Stoffelen and Portabella, 2006). See also 
Portabella, 2002, and Stoffelen, 1998a, who describe the scientific background to wind 
retrieval and processing. 

The radar cross section is a property of the surface itself. It is a measure of the surface 
roughness, z0, and related to the wind stress vector, τ. This is in turn related to the friction 
wind velocity, u* or u* in vector notation. The surface wind at 10 m anemometer height, U10, 
depends on *u  and the temperature difference between the ocean and the overlying air. To 
avoid the latter dependency of scatterometer winds, SAF scatterometer winds, U10N, are 
processed at equivalent neutral stability, i.e., using equal temperature of air and sea (e.g., 
Hersbach, 2010a). In equations and following Portabella and Stoffelen (2009): 
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where k = 0.41 is the von Karman constant, z0 is the roughness depth (also called roughness 
length), ψ is the stability function (positive, negative, and null, for unstable, stable, and 
neutral conditions, respectively) and L is the Monin-Obukhov length, which includes the 
effects of temperature and moisture fluctuations on buoyancy. ρ is the air mass density, ν is 
the kinematic viscosity of the air (1.5x10-5 m2/s), g is the gravitational acceleration at the 
Earth’s surface (9.8 m/s2), and α is the dimensionless Charnock parameter. 

A few remarks can be made concerning systematic effects in scatterometer winds: 
• A scatterometer wind is measured w.r.t. the current and not w.r.t. an earth-fixed frame like 

buoy and NWP winds. In the Gulf Stream or the Kuroshio current, the discrepancy may be 
occasionally as large as 1 m/s in speed. 

• Roughness is caused by air-sea momentum exchange (stress) which depends on 
atmospheric mass ρ. Eq. (5) suggests such dependency, whereas eq. (4) ignores it. 
Typically, ρ varies by a few percent over the globe which is generally ignored in 
scatterometry (Hersbach, 2010b). 

• Ocean mass density also plays a role in momentum exchange and varies by a per mille 
over the globe (e.g., http://en.wikipedia.org/wiki/Water_(molecule)#Density_of_water_ 
and_ice and NOAA World Ocean Atlas). This is also ignored. 

• The momentum exchange and small-scale ocean roughness at a given equivalent neutral 
wind may depend on variations in sea state. Portabella and Stoffelen (2009) found no such 

http://en.wikipedia.org/wiki/Water_(molecule)#Density_of_water


dependency in a statistical assessment using the ECMWF WAM model wave parameters. 
In extreme conditions, particularly near the coast, such effects are quite plausible. It has on 
the other hand been noted that some of these conditions are flagged by the scatterometer 
Quality Controls at KNMI. 

The following effects are also known for their systematic behavior: 
• Contamination by land and/or sea ice. Land and sea ice have a much larger radar cross 

section than the ocean surface, so land or sea ice contamination of a cell may lead to 
overestimation of the wind speed. Quality Control prevents such contamination (e.g., 
Belmonte et al., 2011). 

• Presence and intensity of rain. Microwave radiation is scattered into all directions by 
raindrops in the atmosphere and therefore less signal is received back than in the absence 
of rain, leading to an underestimation of the wind speed. On the other hand, rain clouds 
cause backscattering leading to overestimation of the wind. Moreover, splashing rain on 
the ocean surface disturbs the radar cross section. The former two effects are substantial 
at Ku-band wavelengths (NSCAT, SeaWinds, OSCAT; Nie and Long, 2008), but rather 
small at C band (ERS, ASCAT; Portabella et al., 2011). 

Scatterometer processing starts with defining a regular grid on the Earth’s surface. The 
area of a grid cell is larger than the area over which a single radar measurement is performed. 
Next, for each measurement geometry all individual radar measurements centered within a 
grid cell are averaged. This results in a gridded σ 0 product in which each grid cell contains 
exactly one σ 0 value per antenna view. The averaging process reduces the speckle noise 
(measurement error) that is inherent in radar observations to typically 5%. 

 

 

 

 

 

 

 

 

 

Figure 2: Averaging the radar views (blue ellipses) in the WVC (black square). 
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Scatterometer wind processing starts with the gridded σ 0 product. The retrieved wind 
is therefore representative for the grid cell, further referred to as wind vector cell (WVC). The 
WVC size determines the spatial resolution of the wind field, i.e., the size of the smallest wind 
feature visible. In practice the individual radar measurements do not cover the WVC exactly, 
nor are they spread homogeneously. Such effects are small and generally neglected. Multiple 
views in varying antenna geometry, notably in azimuth, are needed to resolve the wind vector. 
Due to the varying antenna orientation (see figure 2), the area sampled in a given WVC is not 
identical in the different views. Wind variability in the WVC area causes noise in the wind 
retrieval, known as geophysical noise (Portabella and Stoffelen, 2006). The combination of 
speckle and geophysical noise results in a random wind vector RMS error of about 0.5 m/s. 

In order to further improve scatterometer wind biases, the following activities are 
ongoing: 
• Ocean calibration to improve consistency between scatterometer missions; 
• GMF improvements which are expected to benefit consistency of wind calibration across 

the swath and wind direction retrieval, particularly at winds below 4 m/s;  
• Study of geophysical effects, such as those concerned with air-sea momentum exchange, 

e.g., effects of air mass density in generating ocean roughness; 
• QC development in variable wind and rain conditions, near the coast and near the ice 

edge; 
• Study of bias and wind variability effects due to spatial resolution, i.e., concerning wind 

PDF variation as a function of spatial resolution, effects of noise and the non-linear wind 
retrieval function. 

What does a NWP surface model wind represent? 
A NWP model calculates meteorological quantities like wind on a regular grid. The 

equations use derivatives in space and time and only structures defined over several grid 
points are propagated well. In NWP model resolution is commonly referred to as grid 
distance, but spatially resolved structures over the open oceans are usually about 5 times 
larger (Skamarock, 2005). NWP model fields are propagated in discrete time steps and the 
model values are also representative for a time window of several time steps. This poses, of 
course, limits to the effective spatial and temporal resolution of the model fields. The size of 
these limits depends on the model characteristics, e.g., horizontal and vertical diffusion 
schemes and closure of the dynamical equations. In particular, the representation of 3D 
turbulence on scales below 500 km is generally poor in NWP models (Nastrom and Gage, 
1985). 

The NWP surface wind vector depends on how the surface layer processes are 
described in the model (cf. eq. 2-4) and on the representation of boundary layer processes. 
Notable aspects are: 



• Equivalent neutral surface winds (U10N) are computed from the NWP model friction 
velocity, which cannot be directly calibrated. In fact, the NWP model U10N is validated 
against buoys when stability information has been measured (e.g., Portabella and 
Stoffelen, 2009). NWP model stability tends to be too neutral (e.g., Hersbach, 2010a). 
When the advected air is much warmer than the ocean, the situation is called stable. 
Under such conditions the wind profile over the ocean surface changes, leading to 
reduced surface wind and increased turning of the wind with height. The coupling of 
NWP winds with the free tropospheric winds is generally too large in stable conditions, 
leading to strength and direction biases (occasionally > 10 degrees) in the surface stress 
vector (eq. 5). When the ocean is warmer than the overlying air the situation is called 
unstable. Underestimated instability has generally a smaller effect on the surface stress 
vector error than underestimated stability. Several different NWP parameterizations for 
the wind profile exist with differences in momentum flux of up to 30%, but 10m wind 
biases of NWP models are generally only a few percent. To our knowledge, this statement 
includes NWP models with surface layer dependency on sea state, but further feedback 
from the user community would be welcome here. 

• NWP models do generally not describe ocean current, although developments in this 
direction are under way in several centers. Moreover, skilful deterministic ocean current 
modeling is still in its infancy. Without current representation, the relative motion 
between free troposphere and surface will be in error, e.g., too fast when a local current 
exists in the direction of the atmospheric flow. In this case and in case of moderate or 
high winds the surface stress and the roughness depth will be exaggerated. Subsequently 

N10U  will be estimated too high according to eq. (2). It is clear that biases result in NWP 
model N10U  due to ocean current misrepresentation, but with amplitude depending on 
NWP model surface layer parameterization. 

• Roughness is caused by air-sea momentum exchange (stress) which depends on 
atmospheric mass ρ. As mentioned earlier, eq. (5) suggests such dependency, whereas eq. 
(4) ignores it. As in scatterometer wind retrieval, global variations in ρ  of a few percent 
are generally ignored in NWP (cf. eq. 4). 

Surface truth: buoy winds  
Both scatterometer and NWP model winds lack calibration. Conventional wind 

sensors are calibrated, however, and are generally used as calibration standard for both 
scatterometer and NWP winds. In particular moored buoys are platforms dedicated to 
atmospheric and oceanographic measurement.  

A number of moored buoys measure the wind speed and direction, together with a 
number of other parameters. If these include air and sea temperatures it is possible to convert 
the measured wind vector to an equivalent neutral wind vector at 10 m anemometer height and 



compare to scatterometer winds. Buoy winds are commonly given as averages over 10 
minutes. Note that buoys give time-averaged winds at a fixed location, while scatterometers 
give a spatially averaged wind at a certain time. A typical wind speed of 7 m/s averaged over 
10 minutes (600 s) corresponds to a track in one dimension of about 4 km length and a spatial 
scale of about 2 km. This is about one order of magnitude smaller than the typical 
scatterometer resolution. Thus, moored buoys and NWP and scatterometer winds each have a 
different spatial representation. It is important to note in this respect that spatial averaging of 
the wind field leads to a narrowing of the wind speed PDF and one would thus expect less 
extreme winds in a NWP data set than in a buoy wind data set. A narrower wind speed PDF 
corresponds to a lower mean wind of the wind PDF. Spatial averaging thus leads to a bias in 
the wind speed (reduction of the mean) w.r.t. the original data. It is clear that spatial 
representation has to be taken into account in calibration1. 

Moored buoy platforms do not reach 10m generally. Therefore, actual roughness depth 
and stress need to be estimated at the buoy measurement site and these be represented as 
equivalent neutral 10-m winds, U10N, in order to represent the scatterometer data. Although 
roughness depth and stress vector PDF’s do depend on the surface layer parameterization, 
U10N appears rather independent of the parameterization (Portabella and Stoffelen, 2009). 

Moored buoy wind sensors are calibrated at dedicated sites and in wind tunnels. 
However, the buoy measurement platform and its interaction with large waves may cause 
failure to accurately determine extreme winds above 20 m/s. Dedicated hurricane campaigns 
are conducted to calibrate extreme scatterometer winds (e.g., Esteban et al., 2006).  

The buoy wind measurements are w.r.t. an earth-fixed reference frame and thus in case 
of ocean current do not provide an appropriate reference to scatterometer winds, nor provide 
good input for air-sea fluxes which essentially depend on the relative motion of air and sea. 
For the main ocean currents biases up to 1 m/s may occur (Kelly, 2001). 

Buoy wind sensors need calibration and maintenance. To address performance 
anomalies, monitoring and QC are in place at several centers (e.g., Bidlot et al., 2002). These 
schemes prevent instrumental errors to propagate into calibration parameters, but, on the other 
hand, somewhat affect geophysical and spatial sampling. 

Sampling biases may further occur when the data set used is not representative for the global 
wind climate. High-quality buoy measurements, for instance, are concentrated in the tropical 
oceans and along the coasts of North America and Europe (see figure 3 below). Therefore, 
                                                 
1 One may increase temporal averaging to match spatial representation, i.e., using Taylor’s frozen turbulence 

hypothesis, but we note that a fixed temporal averaging implies variable spatial representation as a function of 

wind speed (3 hours averaging corresponds to a 20 km stretch at 2 m/s and a 200 km stretch at 20 m/s). For this 

reason we do not follow this approach. 



alibration results may not be fully representative of the global ocean conditions and be 
geographically biased towards tropical and coastal wind distributions.  

 

 

 

 

 

 

 

 

Figure 3: Irregular global distribution of moored buoys measuring high-quality winds. 

 

How to detect biases? 
Biases show up when plotting the difference between scatterometer wind and model 

wind. A number of such plots is made available on the web. The NWP SAF web page at 
www.nwpsaf.org provides links to monitoring pages of scatterometer differences with 
ECMWF, UKMO, and KNMI NWP models; so-called o-b and o-a differences with NWP 
background and analysis fields, respectively. These differences provide monitoring 
information on scatterometers and models. Also many error studies are published in the 
scientific literature and presented at IOVWST meetings for example 
(http://coaps.fsu.edu/scatterometry/meeting/past.php). 

Systematic differences in winds occur due to 
• System calibration errors; for example, speed-dependent biases will show up as 

geographically- and time-dependent biases, since the mean wind speed is geographically 
and time dependent due to weather and climate; 

• Differences in spatial representation; local wind PDF’s (buoys) have more extreme values 
than area-mean wind PDF’s (NWP, scatterometer); 

• Undetermined geophysical dependencies, e.g., currents, wind variability (e.g., downbursts 
in convection), sea state, etc.; 

• So-called pseudo biases in wind speed due to non-linear transformation of random 
component errors (Stoffelen, 1998b); 

Only categories 1 and 3 are systematic errors that need to be corrected for BLUE wind 
component analysis, while categories 2 and 4 need to be acknowledged, but are not 
incompatible with BLUE wind components. 

http://www.nwpsaf.org/
http://coaps.fsu.edu/scatterometry/meeting/past.php


For statistical calibration of wind components, two methods are distinguished here: 

• Triple collocation. This is the most general, but also the most elaborate method. It yields 
(linear) calibration coefficients and error variances for three collocated data sets; 

• o - b regression. Under some assumptions discussed below, also o - b regression may give 
useful results. 

Regression techniques are widely used to calibrate data sets. Regression will generally 
lead to useful results when the dynamic range of the variables is large as compared to the 
errors involved. For wind components, however, the dynamic range is typically 5 m/s, while 
random errors are typically 1 m/s, i.e., not negligible w.r.t. the dynamic range. In such cases, 
the regression result will critically depend on the random error assumptions, which 
assumptions often will be implicit rather than explicit. Moreover, the spatial representation 
error has to be well taken into account in the random error attribution. We will now illustrate 
the two methods. 

Note that data assimilation systems require BLUE wind components and specify a 
wind component and constant random error. We note that wind components generally behave 
like variables with constant random error due to the fact that a large proportion of the NWP 
and observation errors are due to wind variability effects. Wind variability effects on scales 
below 500 km are mainly governed by 3D turbulence, which in turn is well described as 
variations in wind component on the different scales. In fact, variations in wind speed and 
wind direction are more complex functions of 3D turbulence (see also Stoffelen, 1998). 

Triple collocation calibration 
Method 

The triple collocation method assumes that three systems (buoys, scatterometer, and 
model background in the case considered here) all give information on the true value t . The 
buoy is chosen as absolute reference relative to which the other systems are calibrated. 
Assuming that the buoy is free of bias (i.e., free of systematic errors) and that linear 
calibration suffices for the other two systems, the values w  measured by the different systems 
satisfy 
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with α  and β  the calibration coefficients and δ  the random measurement error. Since most 
errors will be due to speed scaling effects and wind components can be both positive and 
negative, the b calibration coefficients are generally very small and may be ignored. Note that 
the triple collocation calibration procedure is not part of the NWP SAF wind processors: their 



output (and, hence, the OSI SAF wind products) contain the values scatw  and backw  but no 
buoy measurements. 

 Forming equations for all first and second statistical moments results in a set of 
equations that are further simplified by the following assumptions on the error characteristics: 

• Linear calibration by α and β  is sufficient over the whole range of measurement values 
considered for scatterometer and NWP winds; 

• The reference measurement values are unbiased (see above); 
• All random measurement errors δ are unbiased by definition; 
• The measurement errors have constant variance over the whole range of measurement 

values; this is generally corroborated by combined PDF’s of two wind data sets which 
show a rather constant width of the difference distribution as a function of wind 
component strength;  

• The measurement errors are uncorrelated with each other since they are realized 
independently spatial representation errors may concern similar spatial scales and are 
treated separately; 

• The measurement errors are uncorrelated with the measurement values; in fact, any 
variation that is common (correlated) in the three systems is interpreted as a dependent 
realization and caused by the underlying true wind field. The spatial scales represented in t 
are thus determined by the effective NWP model resolution, as this is generally the coarsest 
among the three systems. 

Since both the scatterometer and buoy have better effective resolution than the NWP system, 
they both may resolve true wind variance that is not resolved by the NWP winds. This wind 
variance will be part of both the spatial representation error of the scatterometer and buoy, and 
therefore be a correlated part of the observation error. Some subtleties are involved in 
handling the correlated part of the spatial representation error, see Stoffelen (1998). The 
following example uses representation errors calculated from wind spectra, see Vogelzang et 
al. (2011). 

Under these assumptions the error variances >< 2δ  and the calibration coefficients 
can then be solved from equations (6), after which calibration may be performed as follows: 
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with superscript cal referring to calibration w.r.t. the buoys and superscript NWP referring to 
calibration w.r.t. the NWP model wind climate. 

Example Data Set 

• Buoy measurements not blacklisted by ECMWF (see figure 3); 



• ECMWF forecast; 

• Scatterometer data (from OSI SAF): 

-  ASCAT-coastal, September 1, 2010 – November 30, 2013 

-  ASCAT-12.5,  October 1, 2008 – November 30, 2013  

-  ASCAT-25,  April 1, 2007 – November 30, 2013 

-  SeaWinds-KNMI, November 1, 2007 – November 23, 2009 

Results 

Let uucal buau +=  and vvcal bvav +=  with ( )v,u  the wind components from the OSI 
SAF wind product and ( )calcal v,u  the linearly calibrated wind (note that in the previous 
version of the report calibrated and uncalibrated winds were erroneously switched). The 
calibration constants a and b  are given in the table below for the various scatterometer wind 
products and for the collocated ECMWF forecast 

 

 Scatterometer ECMWF 

Dataset ua  
ub  

(ms-1) 
va  

vb  

(ms-1) 
ua  

ub  

(ms-1) 
va  

vb  

(ms-1) 

ASCAT-coastal 0.9967 0.088 1.0093 -0.062 1.0245 0.238 1.0465 0.025 

ASCAT-12.5 1.0035 0.114 1.0107 -0.045 1.0250 0.249 1.0440 0.045 

ASCAT-25 1.0096 0.116 1.0088 -0.016 1.0183 0.230 1.0467 0.057 

SeaWinds-KNMI 1.0482 0.281 1.0304 0.011 1.0109 0.351 1.0397 0.069 

Table 1: Triple collocation calibration coefficients. 

 

The error standard deviations are given in table 2 below. The numbers are valid for the 
calibrated wind components (using the calibration coefficients given above). See Vogelzang et 
al. (2011) for a discussion of these values. Interestingly, the buoy data have the largest 
random wind error, while it constitutes the best calibrated and most direct winds. This is 
obviously due to the spatial representation error corresponding to the turbulent wind scales 
observed by the buoys, but not by the scatterometer and NWP model.  

Further note that the better resolution ASCAT product shows similar errors for the 
buoy and the ECMWF model, but larger error for the scatterometer. This is mainly due to the 
spatial representation error variance that increases from about 0.6 to 0.8 m2/s2 when going 



from the 25 to the 12.5-km product, due to the poorer resolution of the ECMWF model (see 
Vogelzang et al., 2011). Since the SeaWinds-KNMI product is smoother than the ASCAT 25-
km product, it has a lower spatial representation error, but that is compensated by a larger 
instrument error. Similarly, we noted a much superior comparison of the SeaWinds 100-km 
product to the ECMWF model as compared to the 25-km KNMI SeaWinds product. 

 

Dataset 

Buoy ECMWF Scatterometer 

uε  

(ms-1) 

vε  

(ms-1) 

uε  

(ms-1) 

vε  

(ms-1) 

uε  

(ms-1) 

vε  

(ms-1) 

ASCAT-coastal 1.36 1.53 1.22 1.12 1.01 1.28 

ASCAT-12.5 1.37 1.53 1.24 1.14 0.99 1.25 

ASCAT-25 1.35 1.47 1.23 1.19 0.86 1.05 

SeaWinds-KNMI 1.51 1.53 1.04 1.15 0.98 0.82 

Table 2: Error standard deviations of buoy and scatterometer observation errors and ECMWF model 
error. 

 

Calibration by regression  
Method 

 When applying standard regression methods on differences between observed 
(scatterometer) and model winds, one must be cautious as to how the errors are handled. Most 
regression methods implicitly assume that all errors are contained in the dependent variable 
while o and b errors are of similar size (see table 2), but this will cause errors as depicted in 
figure 4. 

In the figure above the observations are perfectly calibrated (dashed black curve). However, 
when a regression routine assumes all errors to be contained in o, the average for low values 
of b (red dot on the left-hand-side blue line) will lie above the true calibration curve. 
Similarly, the calculated average ‹o|b› at high values of b (red dot on right-hand-side blue 
line) will be too low. As a result, regression would yield something like the red dotted curve. 
In fact, a different regression is obtained when average b values are computed for given o, 
‹b|o›, implicitly assuming perfect o with no random error. 

If, however, one can safely assume that o and b have the same error distribution, which 
is a more reasonable assumption than assuming either one has no error, one may apply 
standard regression to o – b  versus (o + b)/2, as shown in figure 5. Now standard regression 



will not introduce spurious biases. One may also bin the data in o + b values, as indicated by 
the blue lines and the yellow arrows, and obtain a nonlinear calibration curve by calculating 
the average in each bin. In this way, calibration issues for low and/or high winds will become 
visible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Bivariate o and b distribution, showing (dashed) the mean o as a function of b. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Bivariate o and b distribution, depicting the mean o-b as a function of (o + b)/2 (red 
dots). 
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More sophisticated regression methods take the error in both variables into account 
explicitly. The average values are now calculated along skewed lines with a slope determined 
by the ratio of the errors. 

CDF matching 
 Stoffelen (1998b) used a technique for obtaining higher order calibration that is now 
commonly referred to as CDF matching, where CDF is the Cumulative probability Density 
Function of a variable. It follows from eq. (6) that two linearly calibrated collocated data sets 
(so a = 1 and b = 0) have the same underlying PDF of t. If both error PDF’s are the same, both 
distributions must have identical CDF. Since the CDF is a monotonically rising function, the 
CDF’s of the two data sets may be mapped onto each other. This implies a higher order 
calibration of the two data sets, similar to what is obtained by binning o - b against o + b. 

 CDF matching requires that both data sets have the same error variance. This will in 
general not be the case, but the error variances can be made equal if one assumes that the 
errors are Gaussian. If, 22

bo σσ < , one can add a simulated Gaussian error with variance 
22
ob σσ − . If 22

ob σσ < , one can add a simulated Gaussian error with variance 22
bo σσ −  to the 

background. In both cases the two data sets will have equal error variance, so one can 
calculate the CDF’s and match them. 

 The values of 2
oσ  and 2

bσ  can be obtained from triple collocation. However, the triple 
collocation results are averages over all wind speeds and all WVC’s. Plotting 222

bobo σσσ +=−  
as a function of o – b will reveal variations of the total variance with average wind speed and 
/or WVC number. The error variances can now be made equal for each o – b bin and/or WVC 
number. This requires a additional assumptions on 2

oσ  or 2
bσ . One may choose either of them 

constant, or one may take their ratio constant. Some experimenting will be needed to find the 
assumption that suits ones goals best. 

 

Guidance 
 The output of NWP SAF wind data processors (including the OSI SAF wind products) 
is calibrated against in situ wind data using triple collocation. NWP model wind climates may 
differ in quality and effective resolution. Therefore, inconsistencies in the represented spatial 
scales and in calibration should be determined to avoid detrimental impacts. Spatial analyses 
of collocated data sets are recommended to allow identical samples of NWP and scatterometer 
winds and therefore accurate calibration.  

If a bias against observations is encountered, one can take the following measures: 

• Recalibrate the scatterometer winds using the triple collocation and/or o - b regression 
techniques described above. In case of o – b regression, it is advised to calibrate the 



observations w.r.t. to the model, even when the model is known to be incorrect, to ensure 
model consistency. Regression (or CDF matching) will be adequate when the 
scatterometer observation error is similar to the NWP model error in the equivalent 
neutral wind. The latter is NWP-model dependent, where NWP models encapsulating 
smaller spatial scales will generally have larger wind errors.  

• Improve model physics in order to better describe the reality as it is measured and/or 
correct the NWP model climate. However, this is not straightforward, since it depends on 
many aspects and affects weather predictability. This is generally a longer term measure. 

• Filter the data. If the problems occur at certain wind speed ranges, in certain geographical 
area’s, or in certain times of the year, one may consider rejecting those data that cause 
problems. In this respect, we recommend to follow the quality control flags as set in the 
SAF wind processors, AWDP, SDP, and OWDP. 

• Discard the data. Since scatterometer winds are known to be accurate and reliable, this is 
not a recommended strategy. 

Joint observation and NWP model wind distributions are known to be seasonally dependent 
and it is recommended to perform calibration with a data set representative of a full year. 

Monitoring of o-b and o-a differences is needed to be reassured of constant NWP model wind 
climates, For examples of monitoring diagnostics we refer to the web links below. 
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Useful web sites 
• NWP SAF monitoring pages: 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/monitoring 
Under “Scatterometer reports” links are given to the web pages of ECMWF, Meteo 
France, and UKMO. 

• OSI SAF monitoring pages at KNMI: 
www.knmi.nl/scatterometer 
Select a wind product on the right hand side of the screen and then “Monitoring 
information”, again on the right hand side of the screen. 

• IOVWST meeting presentations: 
http://coaps.fsu.edu/scatterometry/meeting/ 
Various presentations on calibration and applications. 

 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/monitoring
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