
Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Python/C/C++ wrapper

for RTTOV v14

James Hocking

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 7 September 2021, between EUMETSAT and the Met Office, UK, by one
or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office,
ECMWF, DWD and Météo France.

Copyright 2024, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks

0.1 01/03/2024 J Hocking First draft for v14 beta.
1.0 04/07/2024 J Hocking Updates following code developments

1.0.1 18/10/2024 J Hocking Updates after Met Office review
1.0.2 06/12/2024 J Hocking Updates after DRR

1

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Table of contents
1. Introduction..3
2. Compilation and example code...4
3. RTTOV classes...7

3.1. Introduction..7
3.2. General method for calling RTTOV..9
3.3. Setting RTTOV options..9
3.4. Loading an instrument..10
3.5. Specifying surface emissivities and reflectances...11
3.6. Using the emissivity and BRDF atlases..12
3.7. Profile data for an RttovSafe object (C++ only)...13
3.8. Profile data for an Rttov object (C++ and Python)..15
3.9. Specifying explicit hydrometeor/aerosol optical properties for scattering simulations.......................18
3.10. Calling RTTOV..20
3.11. Accessing RTTOV outputs..21
3.12. Deallocating memory..22

4. Notes on thread-safety and technical implementation...23
5. Limitations of the wrapper..24
6. Description of underlying wrapper interface...25

6.1. Loading an instrument..25
6.2. Changing RTTOV options..29
6.3. Using the emissivity and/or BRDF atlases..29
6.4. Calling the RTTOV direct model..32
6.5. Calling the RTTOV K model..36
6.6. Calling the RTTOV direct model with explicit optical properties...38
6.7. Calling the RTTOV K model with explicit optical properties...40
6.8. Deallocating memory..41
6.9. Additional wrapper routines..42
6.10. Specific information for Python..43
6.11. Specific information for C/C++..43

Appendix A: C++ RttovSafe and Rttov classes..44
Appendix B: Python Rttov class...51
Appendix C: C++ Profile class (used with RttovSafe objects)..60
Appendix D: C++ Profiles class (used with Rttov objects)...64
Appendix E: Python Profiles class..66
Appendix F: C++ Options class..71
Appendix G: Python Options class...79
Appendix H: C++ Atlas class..83
Appendix I: Python Atlas class...85
Appendix J: Enumeration types (C++) and constants (Python)..87
Appendix K: Gas IDs..90
Appendix L: RTTOV wrapper subroutines...91

2

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

1. Introduction
An interface has been created for RTTOV which allows RTTOV simulations using the direct and K
models to be run from Python3 (tested with v3.9, compatibility is expected with subsequent v3.x
releases), C or C++ . It is possible to use this interface to run RTTOV without writing any Fortran
code. C++ classes and a Python package have been created which allow you to interact with
RTTOV in an object-oriented style rather than calling the wrapper interface subroutines directly.

The intention behind the design of the interface is to provide access to as much RTTOV
functionality as possible while keeping the interface simple.

This document explains how to call RTTOV from Python, C and C++. You should read the RTTOV
user guide (at least the sections that pertain to the kinds of simulations you wish to carry out) in
order to understand how RTTOV works before reading this document: this document cannot be
understood without reference to the RTTOV user guide.

Section 2 of this document describes compilation of RTTOV with the wrapper. Section 3 describes
the recommended way to use the wrapper from C++ or Python: this is via the object-oriented
interfaces implemented in C++ and Python. Section 4 gives some important technical information
about the wrapper implementation related to thread-safety and other issues. Section 5 outlines the
current limitations of the wrapper.

If you want to call the wrapper from C or create an interface in a different language, then you may
need to use the underlying wrapper interface described in section 6. Section 6 is not relevant if you
are using the C++/Python interface described in section 3.

Finally, the appendices provide additional information about the object-oriented classes and the
underlying interface.

Currently the wrapper supports calls to the RTTOV direct and K models for clear-sky and scattering
calculations optionally including use of the surface emissivity and BRDF atlases.

RTTOV v14.0 represents a significant update to RTTOV, and so various aspects of the wrapper
interface have changed since v13 as a result. The most significant changes are:

• pressure half-levels are nlevels in size, and all other vertical profiles are nlayers=nlevels-1
in size, and are provided on the pressure full-levels which interleave the half-levels.

• all classes and interfaces related to RTTOV-SCATT have been removed as scattering
simulations for microwave sensors are done through the standard RTTOV classes.

• the heterogeneous surface capability means that an additional nsurfaces dimension has been
added to the emissivity/reflectance input/output array, and to the profile surface type, near-
surface, and skin arrays.

• surface emissivities and reflectances computed/used by RTTOV are now available through
separate accessor methods/functions after setting a new “StoreEmisRefl” option instead of
overwriting the values in the input emissivity/reflectance array.

• all option and input/output variable names conform to those in RTTOV v14: many were
renamed/updated since v13.

3

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

2. Compilation and example code
The wrapper Fortran source code is contained in the src/wrapper/ directory. You can use the
wrapper with no external library dependencies (the Python wrapper requires f2py), but to use the
emissivity and/or BRDF atlases you must compile RTTOV against the netCDF library (see the user
guide).

The easiest way to compile RTTOV is to edit the file build/Makefile.local to point to your netCDF
installation (if the atlases are required) and then do:

$ cd src/
$../build/rttov_compile.sh

This runs an interactive script for compiling RTTOV. If you want to compile RTTOV manually
refer to section 5.3 of the user guide for details.

Compiling C/C++ code which calls RTTOV

Example Python, C and C++ code is contained in the wrapper/ directory in the top-level of the
RTTOV installation.

For the object-oriented interface you need to include the relevant class definitions. The example
code in the top-level wrapper/ directory demonstrates this. To call the underlying interface
subroutines directly (not recommended in C++/Python) you need to include the
src/wrapper/rttov_c_interface.h header file in your code and compile against the RTTOV libraries.

Running Python code which calls RTTOV

Having compiled RTTOV as directed above the lib/ directory will contain the Fortran-Python
interface in the file rttov_wrapper_f2py.so. You should ensure this is in your current directory or
your $PYTHONPATH.

It is recommended to use the pyrttov package which provides an object-oriented interface to
RTTOV. Alternatively, to call the interface subroutines directly you can import them from
rttov_wrapper_f2py, for example in Python:
> from rttov_wrapper_f2py import rttov_load_inst, \
 rttov_call_direct, \
 rttov_drop_all

See the examples in the top-level wrapper/ directory which demonstrate calling RTTOV from
Python.

4

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Example code and source files
The following files can be found in the wrapper/ directory:

pyrttov_example.py Use of pyrttov Python package for multiple
instruments and use of the emissivity/BRDF atlases

pyrttov_visir_scatt_optp_example.py Use of pyrttov for visible/IR scattering simulations
where optical properties are input

pyrttov_mw_scatt_example.py Use of pyrttov for MW scattering simulations
pyrttov_radar_example.py Use of pyrttov for MW radar simulations

Rttov_example.cpp Use of C++ Rttov class for multiple instruments
including use of the emissivity/BRDF atlases

Rttov_visir_scatt_optp_example.cpp Use of C++ Rttov class for visible/IR scattering
simulations where optical properties are input

Rttov_mw_scatt_example.cpp Use of C++ Rttov class for MW scattering simulations
Rttov_radar_example.cpp Use of C++ Rttov class for MW radar simulations

RttovSafe_example.cpp Use of C++ RttovSafe class for multiple
instruments including use of the emis/BRDF atlases

RttovSafe_visir_scatt_optp_example.cpp Use of C++ RttovSafe class for visible/IR scattering
simulations where optical properties are input

RttovSafe_mw_scatt_example.cpp Use of C++ RttovSafe class for MW scattering
simulations

RttovSafe_radar_example.cpp Use of C++ RttovSafe class for MW radar simulations

Examples of calling RTTOV via underlying wrapper interface directly:
interface_example_ir_scatt_c.c Calling IR scattering simulation in C
interface_example_ir_scatt_cpp.cpp Calling IR scattering simulation in C++
interface_example_mw_scatt_cpp.cpp Calling MW scattering simulation in C++
interface_example_ir_scatt.py Calling IR scattering simulation in Python
interface_example_mw_scatt.py Calling MW scattering simulation in Python

Makefile Makefile to compile all the above C and C++ examples

These can be used as examples from which to develop your own code. The Makefile demonstrates
how to compile C and C++ code which calls RTTOV. In order to compile the examples you should
look at the top of the Makefile to see if you need to modify the compilers, compiler flags, or the
location of your RTTOV libraries. After editing the Makefile as necessary you can compile the
example code in the wrapper/ directory:

$ make

5

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

C++ object-oriented interface

The following files define the classes used by the C++ object-oriented interface to RTTOV (see
section 3); again the Makefile demonstrates how to compile code which uses the object-oriented
interface:

RttovSafe.h/.cpp Class allowing you to call RTTOV for an instrument – carries out
some checks on the profiles to help prevent errors.

RttovProfile.h/.cpp Class representing a single profile for use with RttovSafe.
Rttov.h/.cpp Class allowing you to call RTTOV – limited error checking.
Profiles.h/.cpp Class representing one or more profiles for use with Rttov.
RttovOptions.h/.cpp Class representing RTTOV and wrapper options.
RttovAtlas.h/.cpp Class representing emissivity or BRDF data for a single atlas,

month, and (where relevant) instrument.

The Makefile compiles these classes into a library (librttovcppwrapper) which you can link your
own code against: the example code is compiled like this.

The C++ source includes Doxygen markup. To generate HTML and RTF documentation you can
run the following from within the wrapper/ directory:

$ doxygen doxygen_config_wrapper

The output can be found in wrapper/doxygen_doc_wrapper/.

Python pyrttov package

The pyrttov Python package provides an object-oriented interface to RTTOV in Python. The
package source files are contained in the pyrttov/ directory. The pyrttov_doc/ directory can be used
to generate documentation for pyrttov using Sphinx: from within pyrttov_doc/ run

$ make html

This requires both the pyrttov package and the RTTOV rttov_wrapper_f2py.so library to be in your
$PYTHONPATH: the documentation can be found in _build/html/index.html. Section 3 provides
details on using the pyrttov package.

6

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

3. RTTOV classes

3.1. Introduction

C++ object-oriented interface

A number of C++ classes have been created in order to provide an object-oriented interface to
RTTOV: Rttov, RttovSafe, Options, Profiles, Profile, and Atlas.

RttovSafe and Rttov are the primary classes used to call RTTOV: one instance of either class is
associated with one instrument.

The Rttov object is a fast way to call RTTOV and is associated with a Profiles instance using the
Rttov.setProfiles method which represent one or more RTTOV profiles structures in the form of a
collection of arrays.

The RttovSafe object provides a safer way to call RTTOV because it carries out some checks on the
input profiles before passing them to the RTTOV interface. This is a more user-friendly, but
(slightly) less efficient way to call RTTOV. It is associated with a C++ vector of one or more
instances of the Profile object each of which represents a single RTTOV profile structure.

The following diagram illustrates the relationship between the classes:

The Profile object contains data for one vertical profile which is the smallest possible input on
which to run RTTOV. The private members of the Profile objects are vectors which are safer to use
than pointers, and the methods allow the user to populate the Profile instance in a friendly way with
vectors as entries, or separate values (like with the setAngles method). This is in contrast to the
Profiles object used with the Rttov class which uses pointers to manage profile data.

The association between the RttovSafe instance and the vector of Profile objects is made with the
RttovSafe.setTheProfiles method. This method takes as argument a vector of instances of the
Profile object. The other methods of the RttovSafe class are inherited from the Rttov class.

7

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Each Rttov and RttovSafe object is associated with an instance of the Options class which
represents the RTTOV options structure and also some additional options specific to the wrapper.

It is also possible to use the RTTOV land surface emissivity and BRDF atlases through the Atlas
object: this is used to obtain land surface emissivity and BRDF values which can be passed to an
Rttov or RttovSafe object.

In reading the descriptions of the classes below you should refer to the user guide to understand the
RTTOV input and output structures including the options and profiles structures and other aspects
of RTTOV such as the treatment of surface emissivity and reflectance. You should also refer to the
example code in the wrapper/ directory which provides examples of using these classes.

All classes and associated enumerations are defined within the rttov:: namespace.

The following documentation for these classes assumes you are familiar with C++ programming.

Python pyrttov package

The Python implementation of the object-oriented interface follows the C++ version closely, but
there are some important differences:

• to use the package it needs to be in your $PYTHONPATH (or the current directory) and you
can just use import pyrttov.

• the pyrttov package includes Options, Profiles, Rttov, and Atlas classes. The classes carry
out a lot of checks so there is no need for the “safe” versions as in the C++ interface.

• there are no get/set methods to return or specify options, profile variables and outputs.
Instead you refer to the members directly. The member names are identical to those for the
C++ classes with the “get”/”set” omitted (see the following sections for examples and also
the example code provided).

• You can use the Python help() functionality to obtain documentation about any pyrttov
object or object method. For the objects, this displays searchable information about all
methods and members. For example:

myrttov = pyrttov.Rttov()
help(myrttov)
myprofiles = pyrttov.Profiles(1, 54, 1)
help(myprofiles)

Note that for the pyrttov package the array index ordering is the same as the C/C++ ordering
(which is contrary to the order required by Python code calling the underlying interface described in
section 6). Therefore the array index ordering is the same for the C++ and Python classes.

The following sections describe both the C++ and Python classes. Where the documentation
mentions the “Rttov or RttovSafe” classes, in Python this means just the Rttov class. Where there
are important differences between the Python and C++ these are highlighted, but note that where the
documentation refers to get/set methods these apply to the C++ classes and in the Python you use
the member variable directly (same name omitting “get”/”set”) to return data (“get”) or to assign
values (“set”).

8

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

3.2. General method for calling RTTOV

An instance, say “myRttov”, of either the Rttov or RttovSafe classes (C++) or the Rttov class
(Python) should be declared. Each such instance represents a single instrument to simulate. The
methods of the RttovSafe and Rttov C++ classes are given in Appendix A: the majority of methods
are common to both classes. The difference is in the way the profile data are associated with
instances of each class. Appendix B gives the methods and members of the Python Rttov class.

The general steps for calling RTTOV via the object-oriented interface are similar to those described
in the user guide. This typically involves:

• setting the RTTOV options

• loading an instrument

• optionally initialising the emissivity and/or BRDF atlases

• specifying the surface emissivities and reflectances

• specifying the profile data to simulate

• calling RTTOV

• accessing the simulation outputs

• deallocating memory

Each of these steps is described in more detail in the following sub-sections.

3.3. Setting RTTOV options

This myRttov object has a member named “options” (C++) or “Options” (Python) which is an
instance of the Options class. This is used to specify the RTTOV and wrapper-specific options.

In C++, to change an option associated with an Rttov/RttovSafe instance named “myRttov” you
should use, for example:

myRttov.options.setApplyRegLimits(true);

In Python the equivalent statement is:

myRttov.Options.ApplyRegLimits = True

The methods (C++) and members (Python) of the Options class are listed in Appendices F and G.
Annex J of the RTTOV user guide describes the RTTOV options. The wrapper-specific options are
listed in the table below.

To take advantage of multi-threaded execution (by setting Nthreads > 1) you must compile RTTOV
with OpenMP compiler flags (see user guide).

When calling RTTOV through the wrapper you can pass any number of profiles. The wrapper will
then break these down into chunks and the underlying rttov_direct/rttov_k subroutines
are called for NprofsPerCall at a time until all profiles have been simulated. You may obtain
improved performance (especially with multi-threaded execution) by increasing NprofsPerCall
above the default of 1, but if you are simulating a very large number of channels you may run out of

9

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

memory if this is set too high.

By default, the calls to RTTOV return the total TOA radiances and the equivalent brightness
temperatures or reflectances (depending on channel wavelength). If you require access to additional
RTTOV outputs you should set the StoreEmisRefl, StoreTrans, StoreRad, StoreRad2,
StoreDiagOutput, and/or StoreEmisTerms options. You can then access the corresponding
additional outputs via the relevant methods (C++) or members (Python) after calling RTTOV.

Wrapper Option Value Description

VerboseWrapper True/False Set to true for more verbose output from the wrapper (default false, all output
suppressed except fatal error messages).

Nthreads Integer If <=1 RTTOV is called via the standard interface (i.e., rttov_direct/rttov_k), if >1
RTTOV is called via the parallel interface (i.e., rttov_parallel_direct/
rttov_parallel_k) using the specified number of threads (default 1).

NprofsPerCall Integer > 0 Sets the number of profiles passed to each call to rttov_direct or rttov_k within the
wrapper (default 1).

CheckOpts True/False If set to true the Fortran rttov_user_check_options subroutine (see user
guide Annex I) is called to help ensure consistency between the selected options
and the loaded coefficient file (default false).

StoreEmisRefl True/False Set to true to enable access to surface emissivities, BRDFs, and diffuse reflectances
used in the RTTOV simulations (default false).

StoreTrans True/False Set to true to enable access to transmittance outputs from RTTOV calls (default
false).

StoreRad True/False Set to true to enable access to radiance outputs from RTTOV calls (default false).

StoreRad2 True/False Set to true to enable access to secondary radiance outputs from RTTOV calls
(default false). If this is set to true then StoreRad is automatically set to true as well.

StoreDiagOutput True/False Set to true to enable access to diagnostic outputs from RTTOV calls (default false).

StoreEmisTerms True/False Set to true to enable access to the emissivity retrieval outputs from RTTOV direct
model calls (default false).

RadarKAzef True/False Radar K input perturbations are in zef_k if false or azef_k if true (default false).

3.4. Loading an instrument

The name of the optical depth (“rtcoef_”) coefficient file should be specified by calling the
myRttov.setFileCoef method (C++) or assigning to myRttov.FileCoef (Python). If required the
hydrotable and/or aertable optical property file names should also be specified using the
setFileHydrotable and setFileAertable methods respectively. For MFASIS-NN simulations the
MFASIS-NN coefficient file should be specified using setFileMfasisNN. If using the ARO-scaling
polarisation mode with MW hydrometeor scattering simulations, the MwPolMode must be set to
ARO-scaling and the location of the look-up table can be specified using setFileMwPol before
reading the coefficients.

The coefficients are read in by calling the myRttov.loadInst method. If called without arguments

10

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

all channels are read from the coefficient file. Alternatively a C++ vector/numpy array of channel
numbers may be specified in order to read coefficients for a subset of channels. Note that if a subset
of n channels is read, they are referenced by numbers 1...n subsequently rather than by their original
channel numbers as described in the RTTOV user guide.

After an instrument has been loaded the options can be changed. If you call the
myRttov.updateOptions method and the wrapper CheckOpts option is set to true this will force a
consistency check on the options and loaded coefficients and will report any errors which can be
useful for debugging simulations. The myRttov.printOptions method will print out the options
structure (this calls the rttov_print_opts Fortran subroutine). Note that changing the coefficient
filename(s) after loading the instrument will have no effect.

3.5. Specifying surface emissivities and reflectances

You should refer to user guide section 8.3 to understand how RTTOV handles surface emissivity
and reflectance.

You can pass your own values for surface emissivity and/or reflectance into RTTOV or RTTOV can
provide suitable values. The user guide provides full details of the treatment of surface emissivity
and reflectance. You should declare an array SurfEmisRefl with dimensions [5][nprofiles]
[nsurfaces][nchannels].This should be initialised before every call to RTTOV. The first dimension
of this array provides access to emissivity (index 0), BRDF (index 1), diffuse reflectance (index 2),
specularity (index 3), per-channel effective Tskin (index 4) for all channels and profiles being
simulated. Data are specified for every surface for each profile.

Where emissivity/BRDF/diffuse reflectance values in this input array are greater than or equal to
zero the corresponding elements of the RTTOV calc_emis/calc_brdf/calc_diffuse_refl arrays will be
set to false respectively, and the input values of the surface parameters will be used for the
simulations. Where the emissivity/BRDF/diffuse reflectance values in SurfEmisRefl are less than
zero the corresponding elements of the RTTOV calc_emis/calc_brdf/calc_diffuse_refl arrays
respectively will be set to true and RTTOV will provide values using its internal models (see the
user guide for more details). The emissivity and BRDF atlases can be used to provide input values
for land surface emissivity and BRDF: this is described in the next section.

The surface specularity values are used when the Lambertian surface option is activated: if the
input values are less than zero, then the wrapper will set them to zero when calling RTTOV.

The effective Tskin values are used with the UseTskinEff option is true.

The SurfEmisRefl array is associated with the myRttov instance using the setSurfEmisRefl
method (C++) or assigning to the SurfEmisRefl member (Python).

In RTTOV v13 and earlier, the SurfEmisRefl array was overwritten during the wrapper call with
the emissivity/reflectance values used in the simulations. This is no longer the case: the
SurfEmisRefl array remains unmodified after calling RTTOV. To access the
emissivities/reflectances used in the simulations, set the StoreEmisRefl option to true (see section
3.3) and use the getSurfEmis, getSurfBrdf, getDiffuseRefl methods (C++) or SurfEmis,
SurfBrdf, SurfDiffuseRefl members (Python) to access the values.

11

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

It is not mandatory to specify/set the SurfEmisRefl array. If you do not then it is equivalent to
setting calc_emis, calc_brdf, and calc_diffuse_refl to true for all channels and setting the specularity
to zero. In this case the UseTskinEff option must be false. After calling RTTOV you can obtain the
emissivities/reflectances as described above. In pyrttov if you have assigned an array to
SurfEmisRefl and you wish to delete this before making another call to RTTOV you can use

del myRttov.SurfEmisRefl

3.6. Using the emissivity and BRDF atlases

An instance, say “myAtlas”, of the Atlas class can be declared. Each such instance is used to
contain data from one of RTTOV's atlases for a specific month and, where relevant, for a specific
instrument. Any combination of atlases and months can be used: each Atlas object is independent.
The methods and members of the Atlas class are given in Appendices H and I. You should also read
the relevant section of the user guide to understand what atlases are available and how they work.

Loading atlas data

The path to the atlas data to be loaded must first be specified via the setAtlasPath method (C++) or
the AtlasPath member (Python).

The atlas data are then read via one of three methods: loadBrdfAtlas, loadIrEmisAtlas or
loadMwEmisAtlas. In each case the month of the data to be loaded is specified. The atlas_id
argument is used to specify which of the available atlases of the relevant type is to be loaded. The
load methods return a Boolean value indicating success (true) or failure (false).

The BRDF and IR emissivity atlases can optionally be loaded for a specific instrument (in which
case access to the atlases is significantly faster) and the CNRM MW emissivity atlas must be loaded
for a specific instrument. The instrument is specified by passing an Rttov/RttovSafe object to the
relevant Atlas load method. The instrument itself must have been loaded before the Atlas object is
initialised.

If you wish to use the BRDF or IR emissivity atlas data with any compatible instrument then do not
pass an Rttov/RttovSafe object to the Atlas load method. The TELSEM2 MW atlas is never
initialised for use with a specific instrument and in this case any Rttov/RttovSafe object passed to
the load method is ignored.

Obtaining emissivitiy/BRDF values

The process for returning emissivity/BRDF differs between C++ and Python:

In C++ the fillEmisBrdf method is used: this requires you to allocate a three-dimensional array of
size [nprofiles][nsurfaces][nchannels]. A pointer to this array is passed to the subroutine and the
array is filled with values from the atlas.

In Python the getEmisBrdf method is used: this returns a three-dimensional array of size
[nprofiles][nsurfaces][nchannels] containing the emissivity or BRDF values.

In both cases you must also pass an Rttov/RttovSafe object to the getEmisBrdf method: the
instrument must have been loaded and it must have one or more profiles associated with it (see

12

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

sections 3.7 and 3.8). The profile data are used when retrieving emissivities/BRDFs from the atlas:
see the user guide for information on which profile variables are used by each atlas. You can also
optionally specify a channel list (in C++ this is a vector of ints): this should usually match the
channel list you will pass into the call to RTTOV (see below). If the channel list is omitted,
emissivity/BRDF values are returned for all channels of the loaded instrument. The resulting arrays
are populated for all surfaces associated with each profile.

The various atlases behave differently for profiles with different surface types (specified in
profiles(:)%skin(:)%surftype in the Fortran). This is described in the user guide. To provide more
control over the atlases, the Atlas object has three Boolean flags: IncLand, IncSea and IncSeaIce
which can be accessed via get/set methods in C++ or accessed directly in Python as usual. When
one or more of these flags is true the atlas will be called for profiles/surfaces with the corresponding
surface type and any returned values will be output in the emissivity/BRDF array. If the flag is false
then emissivities/BRDFs for profiles/surfaces of that surface type will be left as they are by the call
to fillEmisBrdf (C++) or will be filled with negative values in the array returned by getEmisBrdf
(Python). By default all three flags are true so the atlases are called for all profiles/surfaces.

The MaxDistance member can be set to a positive value: in this case, if an IR emissivity or BRDF
atlas doesn't have emissivity/BRDF data at the specified lat/lon location, the atlas will return a
nearby valid value (if one exists) within the specified distance of the original location. Units are km.

Deallocating atlas data

When the Atlas destructor is called any associated data is deallocated so you do not have to worry
about deallocating data manually. However you can deallocate the data in an Atlas object so that it
can be re-used by calling the dropAtlas method.

3.7. Profile data for an RttovSafe object (C++ only)

The Profile class represents a single RTTOV profile structure. It is used to provide the atmospheric
and surface variables to the RttovSafe instance in the form of a C++ vector of Profile objects. The
methods of the Profile class are given in Appendix C.

A Profile object is instantiated as follows, where nlevels is the number of pressure half-levels and
nsurfaces is the number of surfaces:

rttov::Profile myProfile(nlevels, nsurfaces);

You can then use the methods listed in Appendix C to specify the profile variables. Many of these
methods are self-explanatory: for example, the setT method is used to specify the temperature
profile.

The setGasUnits method takes an argument of type rttov::gasUnitType which is defined in
wrapper/Rttov_common.h. The constants of this enumeration are listed in Appendix J. If
unspecified the default is kg/kg over moist air, but a warning is printed if you do not set this
explicitly.

Pressure half-levels are mandatory (set using the setPHalf method), but, as in RTTOV itself, the
pressure full-levels (setP) do not need to be specified.

13

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

If nsurtfaces>1 then the setSurfaceFraction method must be called to specify the surface coverage
fraction for surface indices 1,...,nsurfaces-1. This should not be called if nsurfaces=1.

The setAngles, setSurfGeom and setDateTimes methods must all be called for every Profile
instance, and the setNearSurface, setSkin, setSurfType methods must be called for every surface
for every Profile. Each of these methods sets a collection of related profile variables: the RTTOV
user guide provides more information on which variables are required for particular types of
simulations. If an argument to one of these subroutines corresponds to a variable which is not
relevant to your simulations you can set it to zero. The table at the end of section 3.8 lists the
variables that must be specified in each array (the order of the variables is important).

The setSimpleCloud, setClwdeParam, setIcedeParam, setHydroFracEff and setZeeman
methods do not need to be called unless you require the corresponding variables to be specified in
your simulations. If unspecified the Profile object will set the values of the corresponding profile
variables to suitable defaults or to zero.

For aerosol simulations, you can specify individual aerosol concentration profiles by their index
using the setAerN method. The wrapper is limited to 30 aerosol species. This method can be used
with the supplied NWP SAF OPAC and CAMS aertable files, but methods are provided for each
OPAC and CAMS species based on the aerosol name (e.g., setInso), and these may be used instead.
There are currently no named methods for the ICON-ART aertable files, so the setAerN method
must be used in that case. Any unspecified aerosol type will have concentrations set to zero. The
aerosol concentration units are specified via the setMmrAer method which defaults to true (kg/kg).

The setAerClimProf method can be used to generate climatological profiles based on the OPAC
components for a selection of different scenarios. This must be used with an OPAC aertable file,
and the other profile variables (in particular gas units, aerosol units, pressure half-levels,
temperature, water vapour, SurfGeom) must be specified before this method is called. The argument
is an index 1-10 for the required climatological scenario. See the rttov_aer_clim_prof subroutine in
Annex I of the RTTOV user guide for more information. The method adds the relevant aerosol
profiles to the Profile object. It is important not to change the aerosol units (via setMmrAer) after
this method has been called.

For hydrometeor simulations, you can specify individual hydrometeor concentration profiles by
their index using the setHydroN method. The wrapper is limited to 30 hydrometeor species. This
method can be used with the NWP SAF UV/VIS/IR and MW hydrotables, but methods are
provided for each individual hydrometeor type in these hydrotable files. In most cases you must
specify a single hydro (cloud) fraction profile: this can be done via the setHydroFrac method. If
you are specifying per-hydrometeor fractions (if the PerHydroFrac option is set to true) then you
can use the setHydroFracN method. Finally, for UV/VIS/IR species that have an explicit
dependence on particle size, you can input the particle effective diameter profiles using the
setHydroDeffN method. In addition, two methods (setClwDeff and setIceBaumDeff) are provided
for the NWP SAF UV/VIS/IR hydrotable particle types with Deff-dependence. If the concentration,
fraction, or Deff profiles are unspecified for a hydrometeor type, the corresponding profile values
are set to zero. The hydrometeor concentration units are specified via the setMmrHydro method
which defaults to true (kg/kg).

Once a Profile object has been populated with profile data it can be stored in a C++ vector of

14

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Profile objects. For example:

std::vector <rttov::Profile> profiles;
profiles.push_back(myProfile);

This can be repeated for every profile to be simulated. All profiles must have the same number of
levels and surfaces (nlevels and nsurfaces), and the gas, aerosol, and hydrometeor units must be the
same for all profiles. Once the collection of Profile instances is fully populated it is associated with
the RttovSafe instance by calling the myRttov.setTheProfiles method. This method makes the
following checks to help prevent errors:

• ensures the input is a vector of Profile objects
• ensures the vector is not empty
• ensure all the profiles have the same number of levels and surfaces
• if pressure is not filled for the first profile:

◦ ensure the number of levels of the profile is the same of the number of levels of the
coefficient file: in this case the pressures levels of the coefficient file are used.

• check if all Profile objects in the input vector have the same content (gas, aerosols, and
hydrometeors, gas_units, mmr_hydro, mmr_aer)

• for each profile of the input vector call the check method of the Profile object.

The Profile.check method makes the following checks:
• ensures all mandatory fields are provided, but does not perform a check upon the values

(this is done within RTTOV itself)
• if optional fields have not been set initialise them with default values.

It is very important that all profile data are associated with the Profile objects before they are
associated with the RttovSafe instance.

3.8. Profile data for an Rttov object (C++ and Python)

The Profiles class represents one or more RTTOV profile structures. The atmospheric profiles and
other variables are specified as a series of arrays containing data for all profiles to be simulated. An
instance of the Profiles class is then provided to the Rttov instance. The methods (C++) and
members (Python) of the Profiles class are given in Appendices D and E.

A Profiles object is instantiated as follows, where nprofiles is the number of profiles, nlevels is the
number of pressure half-levels, and nsurfaces is the number of surfaces.

In C++:

rttov::Profiles myProfiles(nprofiles, nlevels, nsurfaces);

In Python:

myProfiles = pyrttov.Profiles(nprofiles, nlevels, nsurfaces)

In C++ the data for each profile variable is provided to the Profiles instance as a pointer to an array
containing the data for all profiles using the relevant method. For example, the setT method assigns
the temperature profiles to the Profiles instance. There are methods for setting profile data for each
trace gas and the pressure levels.

15

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

The setGasUnits method takes an integer argument: see the RTTOV user guide for valid values. If
unspecified the default is kg/kg over moist air.

In Python, the gasUnitType class can be used to specify the units rather than using integer literals
(see Appendix J).

In Python numpy arrays are assigned directly to the member variables of the myProfiles object (e.g.
myProfiles.T = temperature_array for the temperature profiles). Profiles for each trace
gas and the pressure levels can be set in the same way.

Pressure half-levels are provided via an array of size [nprofiles][nlevels]. All other vertical profile
variables (temperature, gas concentrations, aerosol and hydrometeor variables) are provided via
arrays of size [nprofiles][nlayers]. As in RTTOV itself, specification of pressure full-levels is
optional.

If nsurtfaces>1 then the setSurfaceFraction method must be called in C++ to specify the surface
coverage fraction for surface indices 1,...,nsurfaces-1 for every profile (array dimensions [nprofiles]
[nsurfaces-1]). In Python, the array is assigned directly to the SurfaceFraction member. Surface
fraction should not be specified if nsurfaces=1.

In C++ the setAngles, setNearSurface, setSkin, setSurfType, setSurfGeom and setDateTimes
methods must all be called for each Profiles instance in C++. Each of these methods sets a
collection of related profile variables. The argument to each method is a two or three dimensional
array (see Appendices D and E). The first dimension is nprofiles, and the final dimension depends
on the number of variables being set by each method (see table below). The RTTOV user guide
provides more information on which variables are required for particular types of simulations: if an
element of an array argument to one of these subroutines corresponds to a variable which is not
relevant to your simulations you can set it to zero.

The setSimpleCloud, setClwdeParam, setIcedeParam, setHydroFracEff and setZeeman
methods do not need to be called unless you require the corresponding variables to be specified in
your simulations. If unspecified the Profiles object will set the values of the corresponding profile
variables to zero (or to suitable defaults).

In Python the same applies except that the equivalent member arrays (Angles, NearSurface,
SimpleCloud, etc) are assigned for each Profiles instance rather than via a method call.

In C++ to supply the hydrometor and aerosol profiles you must use the setGasItem method which
takes the profile as input and an ID for the profile variable being set. This second argument is of
type rttov::itemIdType: this enumeration is defined in wrapper/Rttov_common.h and a complete
list of the associated constants is given in Appendix J. (You can also set the gas profiles using this
method, but it is clearer to use the methods like setQ which are specific to each gas).

In Python there is no equivalent to setGasItem. For aerosol simulations, you can specify individual
aerosol concentration profiles by their index using the setAerN method or by assigning directly to
the AerN members where N=1,2,…,30. The wrapper is limited to 30 aerosol species. Either
approach can be used with the supplied NWP SAF OPAC and CAMS aertable files, but members
are provided for each OPAC and CAMS species based on the aerosol name (e.g., Inso), and profiles
may be assigned directly to these instead. There are currently no named members for the ICON-
ART aertable files, so the setAerN method or AerN members must be used in that case. Any

16

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

unspecified aerosol type will have concentrations set to zero.

The aerosol concentration units are specified via the setMmrAer method (C++) or MmrAer
member (Python) which default to true (kg/kg).

The setAerClimProf method (in both C++ and Python) can be used to generate climatological
profiles based on the OPAC components for a selection of different scenarios. This must be used
with an OPAC aertable file, and the other profile variables (in particular gas units, aerosol units,
pressure half-levels, temperature, water vapour, SurfGeom) must be specified before this method is
called. The argument is an array of integer indices 1-10 for the required climatological scenario for
each profile. See the rttov_aer_clim_prof subroutine in Annex I of the RTTOV user guide for more
information. The method adds the relevant aerosol profiles to all profiles in the Profiles object. It is
important not to change the aerosol units (via setMmrAer/MmrAer) after this method has been
called.

For hydrometeor simulations in Python, you can specify individual hydrometeor concentration
profiles by their index using the setHydroN method or by assigning directly to the HydroN
members where N=1,2,…,30. . The wrapper is limited to 30 hydrometeor species. Either approach
can be used with the NWP SAF UV/VIS/IR and MW hydrotables, but members are provided for
each individual hydrometeor type in these hydrotable files and these may be used instead. In most
cases you must specify a single hydro (cloud) fraction profile: this can be done via the HydroFrac
member. If you are specifying per-hydrometeor fractions (if the PerHydroFrac option is set to true)
then you can use the setHydroFracN method or assign to the HydroFracN members where
N=1,2,…,30. Finally, for UV/VIS/IR species that have an explicit dependence on particle size, you
can input the particle effective diameter profiles using the setHydroDeffN method or assign to the
HydroDeffN members where N=1,2,…,30. In addition, two members (ClwDeff and IceBaumDeff)
are provided for the NWP SAF UV/VIS/IR hydrotable particle types with Deff-dependence. If the
concentration, fraction, or Deff profiles are unspecified for a hydrometeor type, the corresponding
profile values are set to zero.

The hydrometeor concentration units are specified via the setMmrHydro method (C++) or
MmrHydro member (Python) which default to true (kg/kg).

Once all the necessary profile data have been specified in the Profiles instance it can be associated
with the Rttov instance. In C++ this is done using the myRttov.setProfiles method. No checks are
made on the the profile data before RTTOV is called so you must ensure that it conforms to the
requirements of RTTOV and the wrapper interface. It is very important that all profile data are
associated with the Profiles object before it is associated with the Rttov instance. In Python you
can simply assign the myProfiles object to the myRttov.Profiles member: in contrast to the C++
classes, pyrttov does carry out checks on the profile (and other) data as you assign values.

In C++ once you have called RTTOV for the profiles it is up to you to deallocate the arrays which
you associated with the Profiles instance using the “set” methods: these are not deallocated by the
Profiles destructor. This is not an issue in Python as the garbage collection handles this
automatically.

17

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

The following table gives the dimensions and profile variable list which should be specified in each
input array. See the user guide for more information on which profile variables are used for each
type of simulation (e.g. MW, IR, solar, scattering, etc) Unused variables can be set to zero.

Array Type Dimensions* Mandatory/
Optional

Variable list (names refer to Fortran rttov_profile derived
type members)

DateTimes Integer [nprofiles][6] Mandatory (year, month, day, hour, minute, second) per profile
(The full date will be used to calculate the TOA solar
irradiance for solar-affected simulations. The time is not
currently used by RTTOV so can be zero).

Angles Real [nprofiles][4] Mandatory (zenangle, azangle, sunzenangle, sunazangle) per profile

SurfaceFraction Real [nprofiles]
[nsurfaces-1]

Mandatory if
nsurfaces>1

Surface coverage fractions for surface indices 1, ...,
nsurfaces-1. Do not specify if nsurfaces=1.

SurfGeom Real [nprofiles][3] Mandatory (latitude, longitude, elevation) per profile

SurfType Integer [nprofiles]
[nsurfaces][2]

Mandatory (skin%surftype, skin%watertype) per surface per profile

Skin Real [nprofiles]
[nsurfaces][9]

Mandatory (skin%t, skin%salinity, skin%snow_fraction, skin
%foam_fraction, skin%fastem(1:5)) per surface per profile

NearSurface Real [nprofiles]
[nsurfaces][5]

Mandatory (t2m, q2m, wind_u10m, wind_v10m, wind_fetch) per
surface per profile

SimpleCloud Real [nprofiles][2] Optional (ctp, cfraction) per profile

ClwdeParam Integer [nprofiles] Optional clwde_param per profile

IcedeParam Integer [nprofiles] Optional icede_param per profile

HydroFracEff Real [nprofiles] Optional hydro_frac_eff per profile

Zeeman Real [nprofiles][2] Optional (Be, cosbk) per profile

*For the C++ Profile class the arrays are specified for each profile separately so there is no
[nprofiles] dimension. For the C++ and Python Profiles classes the data are specified for all
profiles together in a single array.

3.9. Specifying explicit hydrometeor/aerosol optical properties for
scattering simulations

This section applies to scattering simulations where explicit optical property profiles are provided
rather than using pre-defined optical properties contained in aertable or hydrotable files. This is
described in section 8.4.11 of the user guide: you should read that section in order to understand the
RTTOV scattering options and inputs. It also describes the limitations associated with explicit
optical property inputs.

These simulations are activated by setting the Hydrometeors or Aerosols (or both) options to true
and the corresponding UserHydroOptParam or UserAerOptParam options to true. In this case
the FileHydrotable or FileAertable members of Rttov/RttovSafe do not need to be specified.

Separate optical property inputs are available for hydrometeors and aerosols. The optical properties
are provided in the same way for both. The only difference is that for hydrometeor simulations you

18

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

must specify a profile of hydro fractions (HydroFrac) in the Profile or Profiles object associated
with the Rttov/RttovSafe object whereas this is not required for aerosols.

If aerosols are not active you do not need to specify any aerosol optical property inputs, and
likewise for hydrometeors. Also note that you can specify explicit optical properties for
hydrometeors and use the pre-defined aerosol particle types from an aertable file (as described in
sections 3.7 and 3.8) or vice versa.

Optical properties are specified for every layer for every channel being simulated for every profile.
It is important that in the arguments described below the optical properties are defined for the same
channels being simulated in the call to RTTOV (see the next section).

The optical property parameters are listed in the following table. See the RTTOV user guide for full
information about these inputs, their units, and when each is required.

Argument Type Description

esba[4][nprofiles][nchannels][nlayers] Real Extinction coefficients (esba(1,:,:,:)), single-scattering albedos
(esba(2,:,:,:)), bpr parameters (esba(3,:,:,:)), and asymmetry
parameters (esba(4,:,:,:)). See below for how to calculate bpr
and asymmetry parameters.

phangle[nphangle] Real Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°. Only
required for solar-affected channels when the Solar option is
true (i.e., when solar radiation is included).

pha[nprofiles][nchannels][nlayers]
[nphangle]

Real Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π. Phase functions
are only required for solar-affected channels when the Solar
option is true (i.e., when solar radiation is included).

lcoef[nprofiles][nchannels][nlayers]
[nmom+1]

Real Legendre coefficients corresponding to each phase function.
Note the final dimension is nmom+1: this is consistent with
the RTTOV internal structures: the “zeroth” coefficient is
always 1. Legendre coefficients are required for channels for
which the DOM solver is being used. See below for how to
calculate Legendre coefficients.

The relevant methods of the Rttov/RttovSafe objects for specifying optical properties are listed in
Appendices A and B. The only mandatory input is the esba array containing the extinction
coefficients, single-scattering albedos, bpr parameters (Chou-scaling solver), and asymmetry
parameter (delta-Eddington solver). This is assigned to the Rttov/RttovSafe object using the
setHydroEsba/ setAerEsba methods (C++) or directly assigning to the HydroEsba/AerEsba
members (Python). The extinction coefficients and single-scattering albedos must be supplied for all
layers, channels and profiles. For any channels for which Chou-scaling is not being used the bpr
values may be zero. For any channels for which delta-Eddington is not being used the asymmetry
parameter values may be zero. In the case where either Chou-scaling or delta-Eddington is being
used and solar radiation is not included no other optical property inputs need to be specified.

If the DOM solar solver is used you must specify phase functions for solar affected channels in all
layers containing scattering particles. In addition the grid of angles on which the phase functions are

19

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

defined must also be specified. In C++ these are set together using the setHydroPha/setAerPha
method. In Python the phase angles and phase functions are assigned directly to the
HydroPhangle/AerPhangle and HydroPha/AerPha members.

If the DOM thermal or solar solvers are being used you must specify the Legendre coeffiicients
corresponding to the phase functions: this applies to all channels being simulated via DOM. In C++
the setHydroLcoef/setAerLcoef method is used and in Python the coefficients are assigned directly
to the HydroLcoef/AerLcoef members. Notice that the final dimension of the Legendre coefficient
array is (nmom+1). The value of nmom must equal or exceed the number of DOM streams you are
using in the simulations (there is no advantage to providing more coefficients than this unless you
are changing the number of DOM streams). For layers containing no hydrometeors/aerosol the
phase function values and Legendre coefficients can be zero.

RTTOV provides subroutines to calculate bpr and asymmetry parameters, and Legendre coefficients
from phase functions: this is achieved via the calcBpr, calcAsym, and calcLcoef methods (C++
and Python) whose interfaces are described in Appendices A and B. The subroutine to calculate the
bpr values in particular is relatively slow and you may wish to run this off-line and store the bpr
values required for your simulations. The subroutine in RTTOV is OpenMP-enabled: if you
compiled RTTOV with OpenMP then the number of threads specified in the wrapper options will be
used when calling calcBpr.

3.10. Calling RTTOV

The RTTOV direct model is run by calling the myRttov.runDirect method. There are two
interfaces for this method: if called without arguments all channels that were loaded will be
simulated. Otherwise a list of channel numbers to simulate may be supplied.

The RTTOV K (Jacobian) model is run by calling the myRttov.runK method. As for the direct
model this can be called for all channels (no arguments) or for a subset of loaded channels (by
specifying the list of channel numbers).

The input K perturbation is set to 1 for brightness temperatures, reflectances, and radiances in all
channels. The perturbations used in each channel depend on the ADKBT and ADKRefl options.
See the user guide for details about the K model.

For radar simulations, the brightness temperature and radiance perturbations are set to zero and, by
default, the ZefK input perturbations are set to 1 for all levels for all channels. This is usually not
desirable. As described in the RTTOV user guide, to reconstruct the full radar reflectivity Jacobian
it is necessary to call the K model multiple times, providing input reflectivity perturbations in one
layer at a time. You can do this by specifying the reflectivity perturbation manually via the setZefK
method (C++) or the ZefK member (Python). The RadarKAzef wrapper option determines
whether the input K perturbations are applied to attenuated reflectivities (true) or unattenuated
reflectivities (false).

The user guide makes clear that most Jacobian variables/structures should be initialised to zero
before calling the K model: the wrapper takes care of this internally.

Note that there is no difference in how you set up the input data for the direct and K models: they
require the same inputs. The only difference is that after running the K model, the additional

20

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Jacobian outputs are available.

You can specify a large number of profiles in an Rttov/RttovSafe instance. When RTTOV is called
on the profiles, the number of profiles passed into RTTOV per call is defined in the wrapper
NprofsPerCall option. The total number of profiles is divided into batches of this size and RTTOV
is called repeatedly by the wrapper until all profiles have been simulated. By default
NprofsPerCall is 1, but it can be increased to improve performance especially if RTTOV has been
compiled with OpenMP and the Nthreads wrapper option is increased in order to make use of
multiple threads.

3.11. Accessing RTTOV outputs

Once RTTOV has been called the output data can be accessed by calling various methods (C++) or
accessing corresponding members (Python). Note that this data remains available until RTTOV is
called again for the same instrument (using the runDirect or runK methods for example) at which
point it is replaced with the new output.

The simulated radiances can be obtained by calling the myRttov.getRads method. Simulated
brightness temperatures (for channels with wavelengths above 3µm) and reflectances (for other
channels) can be obtained by calling the myRttov.getBtRefl method. In Python these are accessed
via the Rads and BtRefl members of the Rttov class. For radar simulations, the output reflectivities
are available via getZef and getAZef methods (C++) or Zef and AZef members (Python).

It is also possible to access the surface emissivities/reflectances used in the simulations and the full
contents of the RTTOV transmission, radiance, radiance2, diagnostic output, and emissivity
retrieval structures (so long as those member arrays were output by the simulations). You must set
the relevant wrapper option (StoreEmisRefl, StoreTrans, StoreRad, StoreRad2,
StoreDiagOutput, StoreEmisTerms) before calling RTTOV otherwise calls to these methods (C+
+) or accesses to the members (Python) will throw an exception. In C++ each method returns a
vector of values for a given profile index or for given profile and channel (or surface for
emissivity/reflectance outputs) indices while in Python you can access the full output array for all
channels/profiles/surfaces (as relevant). The relevant methods and members are listed in
Appendices A and B.

After calling the RTTOV K model the Jacobians can be obtained through the various methods/
members listed in Appendices A and B. For example the temperature Jacobians are obtained using
the myRttov.getTK method (C++) which returns the Jacobian for a given channel and profile or
simply by myRttov.TK (Python) which returns the array of Jacobians for all channels and profiles
(dimensions [nprofiles][nchannels][nlayers]).

In C++ many of the methods which return RTTOV outputs take profile and channel indexes as
arguments: these are zero-counted values into the list of profiles and channels simulated. For
example, to return information for the first profile the profile index should be zero, and if you
simulated channels 1, 3 and 5 of an instrument, the indices for these channels in the output are 0, 1
and 2 respectively.

In contrast pyrttov provides access to the whole array of each output for all channels and profiles.

In C++, to return the Jacobians for gas profiles and (if computed) for hydrometeors and aerosols,

21

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

the myRttov.getItemK method is used. The first argument is of type rttov::itemIdType: this
enumeration is defined in wrapper/Rttov_common.h and a complete list of the associated constants
is given in Appendix J. For example, to obtain the water vapour Jacobian for the first channel and
the first profile simulated use:

myRttov.getItemK(rttov::Q,0,0)

In Python there is also a getItemK method and an itemIdType class that can be used to obtain the
relevant IDs (Appendix J) but it is easier (and recommended) to reference each Jacobian directly as
myRttov.QK (water vapour Jacobian), for example.

For Python aerosol simulations, the aerosol concentration Jacobians for each aerosol index can be
accessed via the getAerNK method or via the AerNK members where N=1,2,…,30. In addition, for
OPAC and CAMS aertable files, there are named members for Jacobians of each aerosol species
(e.g., InsoK).

For Python hydrometeor simulations, the hydrometeor concentration Jacobians for each
hydrometeor index can be accessed via the getHydroNK method or via the HydroNK members
where N=1,2,…,30. In addition, for NWP SAF UV/VIS/IR and MW hydrotable files, there are
named members for Jacobians of each hydrometeor type. For simulations with a single hydro
fraction input profile (HydroFrac), the corresponding Jacobian can be accessed via HydroFracK.
Per-hydrometeor hydro fraction Jacobians are available via the HydroFracNK members where
N=1,2,…,30. Similarly for hydrometeor types with explicit dependence on particle size, the Deff
Jacobians are available via the HydroDeffNK members where N=1,2,…,30. In addition, two
members (ClwDeffK and IceBaumDeffK) are provided for Jacobians of the NWP SAF UV/VIS/IR
hydrotable particle types with Deff-dependence.

The additional profile variables which are active in the Jacobian model can be accessed via the
getNearSurfaceK, getSkinK, getSimpleCloudK, etc methods (C++) or the NearSurfaceK,
SkinK, SimpleCloudK, etc members (Python). The order of the variables in these output vectors or
arrays is the same as for the corresponding input arrays. The SurfaceFractionK Jacobian should
only be accessed if nsurfaces>1.

For simulations with explicit optical property inputs, Jacobians of the extinction coefficients, single-
scattering albedos, bpr, and asymmetry parameters are available. In C++ these are accessed via the
getHydroExtK, getAerSsaK, etc members for hydrometeors and aerosols. In Python these are
accessed all together via the AerEsbaK and HydroEsbaK members which return arrays of size [4]
[nprofiles][nchannels][nlayers] corresponding to the input esba optical property arrays.

3.12. Deallocating memory

The deallocation of memory associated with an instrument represented by an RttovSafe or Rttov
object is taken care of automatically when an object is destroyed.

22

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

4. Notes on thread-safety and technical implementation
RTTOV itself (the Fortran code) is fully thread-safe.

However, currently the only supported method of running multi-threaded simulations in the
RTTOV wrapper is by compiling RTTOV with OpenMP support and setting the number of threads
in the wrapper Nthreads option.

The calls to rttov_load_inst, rttov_drop_inst, rttov_load_atlas and rttov_drop_atlas
are not thread-safe (these subroutines are described in section 6). This means the loadInst and
load*Atlas methods of Rttov and Atlas objects are not thread-safe either, nor is destruction of
Rttov and Atlas objects.

Internally, the wrapper manages the loaded instruments (and, separately, the loaded atlases) via a
linked list. When a constructor (destructor) is called, the object is added to (removed from) the
linked list. The loading of instruments and destruction of objects is therefore not thread-safe
because it can result in race conditions when updating the linked list.

Each loaded instrument in the linked list stores simulation results in a data structure. You cannot
make multiple simultaneous calls to run RTTOV simulations on a single loaded instance because
there will be race conditions on this data structure.

In general, code which seeks to instantiate multiple Rttov objects and run simulations on them
simultaneously is not supported and will not run correctly unless you are very careful.

Furthermore, you must take care (especially in C++ code) to avoid inadvertently calling destructors
of Rttov objects because this causes the instrument to be unloaded and memory to be deallocated.
One example of this can be if a number of Rttov objects are assigned to a vector: if the vector is
resized internally, the Rttov object destructors will be called and this will render the objects
unusable for further simulations without reloading the instruments. One mitigation for this
particular example is to ensure the vector has enough space for all Rttov objects that will be stored
in it before adding any objects to it.

You must also not make copies of Rttov or Atlas objects, but passing references and pointers to
them are OK.

To guard against accidental calls to destructors, the C++ Rttov and Atlas copy and assignment
constructors are private.

23

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

5. Limitations of the wrapper
The wrapper currently has the following limitations:

• For emissivity/BRDF atlases, additional optional outputs are not available (for example
standard deviation/covariance data and quality flags cannot currently be accessed).

• Not all ancillary user-level Fortran subroutines available in the RTTOV package are
available through the wrapper. These include the rttov_get_sea_emis, rttov_get_sea_brdf,
rttov_calc_geo_sat_angles, rttov_calc_solar_angles, rttov_scale_ref_gas_prof, and
rttov_emissivity_retrieval subroutines, and the routines in the rttov_zutility_mod module.

• Aerosol simulations with custom aertable files are supported up to a maximum of 30 aerosol
species.

• Hydrometeor simulations with custom hydrotable files are supported up to a maximum of 30
hydrometeor types.

• PC-RTTOV is unavailable.

• TL/AD models are unavailable.

24

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

6. Description of underlying wrapper interface
The recommended way to call the interface from Python or C++ is via the classes which are
described in section 3. The details of the underlying interface described in this section are
purposefully hidden from the user so the classes are a more user-friendly way of calling RTTOV. If
you wish to call RTTOV from C (or other languages) you most likely need to use the interface
described in this section.

The following sub-sections describe the interface in general terms: for Python and C/C++, the
interfaces are very similar. To understand the wrapper interface itself you should read this and then
refer to the final sections 6.10 and 6.11 below which contain information specific to Python and
C/C++ respectively. Appendix L lists all subroutines in the RTTOV wrapper.

The wrapper allows you to load coefficients for one or more instruments simultaneously, set the
options associated with each instrument, make calls to the RTTOV direct and K models, and access
the resulting data. There are also subroutine calls to load data from the IR and MW emissivity and
BRDF atlases, and to obtain emissivity or BRDF data from the loaded atlases.

Each initialised instrument is independent. It is possible to load the same coefficients multiple
times, giving you multiple independent instances of one instrument. For example, you could extract
a different channel set for each instance if you wanted to simulate the instrument for different
purposes. Alternatively you can initialise a collection of different instruments. Each initialised
instrument has its own set of RTTOV options associated with it.

Similarly, each set of atlas data is independent and can be used to obtain emissivities or BRDFs for
any compatible loaded instrument.

You should refer to section 4 for information on thread-safety in the wrapper, and section 5 for
limitations of the wrapper.

6.1. Loading an instrument

The rttov_load_inst subroutine is used to load an instrument. In this call you provide a string
containing the coefficient and optical property filename(s) to load (the “rtcoef” file is mandatory,
and other filenames are optional depending on the simulations being run), any RTTOV options you
wish to set and some wrapper-specific options. The format of this string is described below along
with the wrapper-specific options.

This subroutine returns an ID which is used in subsequent subroutine calls to identify this
instrument. If the returned ID is less than or equal to 0 this indicates that an error occurred and the
instrument was not initialised. The interface is as follows:

rttov_load_inst(inst_id, opts_str, nchannels, channels)

25

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Argument Type Intent Description

inst_id Integer out Returned ID for instrument; if <=0 then error occurred (instrument was not
initialised)

opts_str Character string in String containing options and coef filenames (see below).

nchannels Integer in Size of channels array (not required in Python).

channels(:) Integer in Channels to read from coefficient files. If set to (0) (i.e., an array of length
one containing a zero) all channels will be read from the coefficient file.

Notes:

To initialise the wrapper for multiple instruments you should make one call to
rttov_load_inst per instrument.

If you specify a channel list in channels(:) then beware that this will impact the channel numbering
when you make calls to RTTOV later. See the user guide section 7.5 for more information. In short:
if you have extracted n channels when reading the coefficient file they will subsequently be referred
to as 1,2,...,n rather than by their original channel numbers. If all channels from the coefficient file
are read in you can specify a subset of channels to simulate when you call RTTOV. Alternatively
you can extract just the required channels into a new coefficient file using rttov_conv_coef.exe (see
user guide Annex A) and then read all channels from this new file when loading the coefficients.

Specifying the options string

The options string consists of multiple space-separated key-value pairs. Each key is a character
string related to an option and the value is an integer, real or character string depending on the
option being set. It is important that there are no spaces within the option names (keys).

Example options string in Python:

This string sets up directories as if being called from the top-level wrapper/ directory:

opts_str = 'file_coef ' \
 '../rtcoef_rttov13/rttov13pred54L/rtcoef_msg_4_seviri_o3co2.dat ' \
 'opts%rt_all%o3_data 1 ' \
 'opts%rt_all%solar 1 ' \
 'nthreads 4 '

NB The space separation between options is important and there must be no spaces within option
names or file/path names!

See the example code in the top-level wrapper/ directory for more examples.

26

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

RTTOV coefficient files – rtcoef file mandatory, others optional

Specify full paths to the RTTOV coefficient file(s):

Key Value Description

file_coef Full path to rtcoef file Mandatory, path to rtcoef file.

file_aertable Full path to aerosol optical property file For aerosol simulations, path to aertable file.

file_hydrotable Full path to hydrometeor optical
property file

For hydrometeor simulations, path to hydrotable file.

file_mfasis_nn Full path to MFASIS-NN file For hydrometeor simulations using MFASIS-NN solar
solver.

file_mw_pol Full path to ARO-scaling polarisation
look-up table

For MW hydrometeor simulations using ARO-scaling
polarisation option, full path to sensor-independent ARO-
scaling polatisaton look-up table.

RTTOV options - optional

Every option available in the RTTOV options structure (see user guide Annex J) can be set in the
options string. The key value is given as in the table in Annex J of the user guide. For logical
options the value should be 0 or 1 for false/true respectively. The usual RTTOV default values apply
(see user guide). Remember: there must be no spaces in the option names specified in the string.
Some examples are given below:

Key Value Description

opts%config%verbose 0 or 1 Set RTTOV verbosity flag.

opts%rt_all%solar 0 or 1 Turn solar radiation off/on.

opts%scatt%hydrometeors Integer 1-5 Set interpolation mode.

opts%scatt%thermal_solver Integer 1-3 Set thermal scattering solver.

Wrapper-specific options - optional

Set options that are related specifically to the wrapper:

Key Value Description

verbose_wrapper 0 or 1 Set to 1 for more verbose output from the wrapper (default 0, all output
suppressed except fatal error messages).

nthreads Integer If <=1 RTTOV is called via the standard interface (i.e.,
rttov_direct/rttov_k), if >1 RTTOV is called via the parallel interface
(i.e., rttov_parallel_direct/ rttov_parallel_k) using the specified number
of threads (default 1).

nprofs_per_call Integer – greater than 0 Sets the number of profiles passed to each call to rttov_direct or rttov_k
within the wrapper (default 1).

check_opts 0 or 1 If set to 1 the Fortran rttov_user_check_options subroutine (see
user guide Annex I) is called to help ensure consistency between the
selected options and the loaded coefficient file (default 0).

27

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

store_emis_refl 0 or 1 Set to 1 to enable access to surface emissivities, BRDFs, and diffuse
reflectances used in the RTTOV simulations (default 0).

store_trans 0 or 1 Set to 1 to enable access to transmittance outputs from RTTOV calls
(default 0).

store_rad 0 or 1 Set to 1 to enable access to radiance outputs from RTTOV calls (default
0).

store_rad2 0 or 1 Set to 1 to enable access to secondary radiance outputs from RTTOV
calls (default 0). If this is set to 1 then store_rad is automatically set to 1
as well.

store_diag_output 0 or 1 Set to 1 to enable access to diagnostic outputs from RTTOV calls (default
0).

store_emis_terms 0 or 1 Set to 1 to enable access to the emissivity retrieval outputs from RTTOV
direct model calls (default 0).

radar_k_azef 0 or 1 Radar K input perturbations are in zef_k if 0 or azef_k if 1 (default 0).

Notes:

To take advantage of multi-threaded execution (by setting nthreads > 1) you must compile RTTOV
with OpenMP compiler flags (see user guide).

When calling RTTOV through the wrapper (see below) you can pass any number of profiles. The
wrapper will then break these down into chunks and the underlying rttov_direct/etc
subroutines are called for nprofs_per_call at a time until all profiles have been simulated. You may
obtain improved performance (especially with multi-threaded execution) by increasing
nprofs_per_call above the default of 1, but if you are simulating a very large number of channels
you may run out of memory if this is set too high.

The calls to RTTOV include arguments which return the total TOA radiances and the equivalent
brightness temperatures or reflectances (depending on channel wavelength). If you require access to
additional RTTOV outputs you should set the store_emis_refl, store_trans, store_rad, store_rad2,
store_diag_output, and/or store_emis_terms options. You can then use the subroutines listed in
Appendix L to access this data after calling RTTOV. See the user guide for more information on
RTTOV outputs.

If you are performing hydrometeor or aerosol scattering simulations with optical properties from
hydrotable or aertable files you must ensure the hydrometeors and/or aerosols RTTOV options are
set to true and the paths to the required optical property file(s) are specified in the options string
when loading the instrument. If you wish to carry out MFASIS-NN simulations you must set the
path to the MFASIS-NN coefficient file in the options string in addition to the hydrotable file. When
using the ARO-scaling polarisation option, the pol_mode must be set to this option and the full path
to the polarisation look up table must be provided.

28

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

6.2. Changing RTTOV options

It is possible to modify the options at any time for an instrument which has been initialised by a call
to rttov_load_inst.

rttov_set_options(err, inst_id, opts_str)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) whose options should be
updated.

opts_str Character string in String containing options to change.

You can change any options in the options structure and any of the wrapper-specific options in this
call. Setting the coefficient file names has no effect in a call to rttov_set_options and you
should not turn on scattering options which require optical property files if those files were not read
in when rttov_load_inst was called. Options that were previously set are retained so you
only need to specify options you wish to change.

You can also print the RTTOV and wrapper options by calling rttov_print_options (this
calls the RTTOV rttov_print_opts Fortran subroutine, see user guide Annex I):

rttov_print_options(err, inst_id)

where err is the output return code and inst_id is the input ID for the instrument whose options you
wish to print.

6.3. Using the emissivity and/or BRDF atlases

The emissivity and BRDF atlases can be used to obtain land surface and, in some cases, sea-ice and
water emissivity and BRDF values that can be passed into the call to RTTOV. Full details about the
atlases are given in the user guide.

In order to use the emissivity or BRDF atlases they must first be loaded. There are separate
subroutines to set up the BRDF, IR emissivity and MW emissivity atlases. Each subroutine returns a
wrapper atlas ID which is used in subsequent subroutine calls to identify this atlas data. If the
returned ID is less than or equal to 0 this indicates that an error occurred and the atlas was not
initialised. The interfaces are as follows:

rttov_load_ir_emis_atlas(atlas_wrap_id, path, month, atlas_id, inst_id,
ang_corr, camel_version, year)
rttov_load_mw_emis_atlas(atlas_wrap_id, path, month, atlas_id, inst_id, year)
rttov_load_brdf_atlas(atlas_wrap_id, path, month, atlas_id, inst_id)

29

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Argument Type Intent Description

atlas_wrap_id Integer out Returned wrapper ID for atlas data; if <=0 then error occurred
(atlas was not initialised)

path Character string in String containing path to atlas data files.

month Integer (1-12) in Month for which to initialise atlas.

atlas_id Integer in ID of atlas to load, set to -1 for default atlas (see the user guide for
the valid IR, MW and BRDF atlas IDs).

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument for
which to initialise atlas (may be <=0: see below).

ang_corr Integer in IR atlas only: set non-zero to include the zenith angle emissivity
correction (see user guide for more information).

camel_version Integer (2 or 3) in IR atlas only: specifies version of CAMEL single-year or
climatology atlas (v2 or v3), ignored for UWIRemis atlas.

year Integer in Emissivity atlas only: specifies year for CAMEL v3 single-year
atlas, or for CNRM atlas. See user guide. Ignored for other
atlases.

Notes:

You can call these subroutines as many times as required (subject to memory limitations) to
initialise atlas data from different atlases for multiple months and/or instruments.

For the BRDF atlas, only one atlas is available so you can set the atlas_id to -1.

There are three IR emissivity and two MW emissivity atlases available with IDs as follows:

• UW IR emissivity atlas: atlas_id = 1 (default)

• CAMEL single-year IR emissivity atlas: atlas_id = 2

• CAMEL climatology IR emissivity atlas: atlas_id = 3

• TELSEM2 MW atlas: atlas_id = 1 (default)

• CNRM MW atlas: atlas_id = 2

The IR emissivity and BRDF atlases can be initialised with an inst_id for a loaded instrument: in
this case the atlas data will be specific to that instrument and calls to obtain emissivities/BRDFs will
be more rapid, but the loaded data must only be used with that instrument. If you supply a negative
inst_id the atlas data can be used with any visible/IR instrument.

The TELSEM2 MW atlas can always be used with any MW instrument so the inst_id argument is
ignored in this case.

The CNRM MW atlas is always initialised for a specific instrument and so the inst_id for a loaded
instrument must always be supplied in this case.

30

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Obtaining emissivity/BRDF values

A single subroutine is provided to return emissivity/BRDF values from the atlas:

rttov_get_emisbrdf(err, atlas_wrap_id, &
 latitude, longitude, &
 surftype, watertype, &
 zenangle, azangle, &
 sunzenangle, sunazangle, &
 snow_fraction, &
 inst_id, channel_list, &
 max_distance, &
 emisbrdf, &
 nchannels, nprofiles)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

atlas_wrap_id Integer in ID of atlas data (as returned by one of the atlas loading
subroutines described above) to use.

latitude(nprofiles) Real in Latitude for each profile (used by: all atlases).

longitude(nprofiles) Real in Longitude for each profile (used by: all atlases).

surftype(nprofiles) Integer in skin%surftype for each profile (used by: all atlases).

watertype(nprofiles) Integer in skin%watertype for each profile (used by: BRDF atlas).

zenangle(nprofiles) Real in Satellite zenith angle for each profile (used by: BRDF atlas,
MW emissivity atlases, IR atlases only if angular correction is
applied).

azangle(nprofiles) Real in Satellite azimuth angle for each profile (used by: BRDF atlas).

sunzenangle(nprofiles) Real in Solar zenith angle for each profile (used by: BRDF atlas, IR
emissivity atlases if angular correction applied)

sunazangle(nprofiles) Real in Solar azimuth angle for each profile (used by: BRDF atlas).

snow_fraction(nprofiles) Real in skin%snow_fraction for each profile (used by: optionally by
IR emissivity atlas).

inst_id Real in ID of loaded instrument for which to obtain emissivities/
BRDFs. Must be compatible with the atlas data.

channel_list(nchannels) Integer in List of channel numbers for which to obtain emissivities/
BRDFs.

max_distance Real in Maximum distance (km) within which to search for a valid
emissivity/BRDF if no value is found at given location (IR
emissivity and BRDF atlases only, set to 0 for no search).

emisbrdf(nprofiles,nchannels) Real inout Output emissivities/BRDFs (depending on atlas type) for each
channel and for each profile.

nchannels Integer in Number of channels to simulate (not required in Python).

nprofiles Integer in Number of profiles being passed in (not required in Python).

31

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Notes:

This subroutine can be called with suitable atlas data to obtain the emissivity and/or BRDF values
for input to calls to RTTOV (see below).

See Annex J and table 7.2 in the user guide for information about profile variables (the names in the
table above relate to the names in the Fortran profile structure). The RTTOV user guide provides
more information about the atlases in respect of, for example, how they each treat different surface
types and the input data required by each atlas. All arguments must be supplied to the interface, but
if particular variables are not used by the specified atlas the arrays can just be initialised with zeros.

The array index ordering shown above is that which should be used in C/C++: this is opposite to
Fortran array index ordering. For Python you should reverse the order of the indices for the 2-
dimensional array arguments. It may also be more efficient to ensure that Python stores the arrays in
Fortran-contiguous order. See the Python, C and C++ examples which illustrate how to declare the
array arguments.

If you extracted a subset of channels from the coefficient file in the rttov_load_inst call for the
supplied inst_id then the channel numbers in channel_list(:) are indexes into this list (see user guide
section 7.5).

If the specified atlas has no data for the given location it will return a negative value. You may wish
to check the output of this subroutine call for negative values and use a different source of
emissivity in those cases. However you can pass negative values into RTTOV (see below) and
RTTOV will provide surface emissivity/BRDF values for those channels in the simulations.

You can specify a positive value in the max_distance argument to enable a search for a nearby valid
emissivity/BRDF if there is no value at the given location (IR emissivity and BRDF atlases only).
See the user guide for more information on this feature.

6.4. Calling the RTTOV direct model

Once a coefficient file has been loaded you can call RTTOV to simulate radiances for an arbitrary
number of profiles. Profile data is input via a series of integer and real (float) arrays. The top-of-
atmosphere radiances and brightness temperatures (or reflectances) are returned via array
arguments. The interface is as follows:

rttov_call_direct(err, inst_id, channel_list, &
 datetimes, angles, surfgeom, &
 surface_fraction, surftype, skin, near_surface, &
 simplecloud, clwde_param, icede_param, &
 hydro_frac_eff, zeeman, &
 p_half, p, t, &
 gas_units, mmr_hydro, mmr_aer, &
 gas_id, gases, surfemisrefl, &
 btrefl, rads, &
 nchannels, ngases, nlevels, nprofiles, nsurfaces)

32

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument
to simulate.

channel_list(nchannels) Integer in Channel numbers to simulate.

datetimes(nprofiles,6) Integer in (year, month, day, hour, minute, second) for each profile.

angles(nprofiles,4) Real in (zenangle, azangle, sunzenangle, sunazangle) for each profile.

surfgeom(nprofiles,3) Real in (latitude, longitude, elevation) for each profile.

surface_fraction(nprofiles,
nsurfaces-1)

Real in Surface coverage fraction for surface indices 1, ..., nsurfaces-1
for each profile. If nsurfaces=1 this is of size 0.

surftype(nprofiles,nsurfaces,2) Integer in (skin%surftype, skin%watertype) for each surface for each
profile.

skin(nprofiles,nsurfaces,9) Real in (skin%t, skin%salinity, skin%snow_fraction, skin
%foam_fraction, skin%fastem(1:5)) for each surface for each
profile.

near_surface(nprofiles,nsurfaces,5) Real in (t2m, q2m,wind_u10m, wind_v10m, wind_fetch) for each
surface for each profile.

simplecloud(nprofiles,2) Real in (ctp, cfraction) for each profile.

clwde_param(nprofiles) Integer in clwde_param for each profile.

icede_param(nprofiles) Integer in icede_param for each profile.

hydro_frac_eff(nprofiles) Real in hydro_frac_eff for each profile.

zeeman(nprofiles,2) Real in (Be, cosbk) for each profile.

p_half(nprofiles,nlevels) Real in Pressure half-levels for each profile.

p(nprofiles,nlayers) Real in Pressure full-levels for each profile, may be zero in which case
RTTOV calculates them internally.

t(nprofiles,nlayers) Real in Temperature on pressure full-levels for each profile.

gas_units Integer in Set profile gas_units: 0=>ppmv over dry air; 1=>kg/kg;
2=>ppmv over moist air

mmr_hydro Integer in Set profile mmr_hydro flag for hydrometeor units:
non-zero=>kg/kg; 0=>g/m^3

mmr_aer Integer in Set profile mmr_aer flag for aerosol units:
non-zero=>kg/kg; 0=>cm^-3

gas_id(ngases) Integer in List of IDs for gases, aerosol and hydrometeor profiles present
in the gases array, see below.

gases(ngases,nprofiles,nlayers) Real in Gas, aerosol and hydrometeor profiles on full-levels for each
profile: must contain at least water vapour profiles, see below.

surfemisrefl(5,nprofiles,nsurfaces,
nchannels)

Real in Input surface emissivity, BRDF, diffuse reflectance,
specularity, and effective Tskin values for each channel for
each surface for each profile.

btrefl(nprofiles,nchannels) Real inout Output total TOA brightness temperatures (for all channels at

33

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

wavelengths > 3µm) or reflectances (wavelengths < 3µm).

rads(nprofiles,nchannels) Real inout Output total TOA radiances.

nchannels Integer in Number of channels to simulate (not required in Python).

ngases Integer in Size of gas_id(:) array, see below (not required in Python).

nlevels Integer in Number of levels in input profiles (not required in Python).

nprofiles Integer in Number of profiles being passed in (not required in Python).

nsurfaces Integer in Number of surfaces associated with each profile (not required
in Python).

Notes:

If you extracted a subset of channels from the coefficient file in the rttov_load_inst call then the
channel numbers in channel_list(:) are indexes into this list (see user guide section 7.5).

The array index ordering shown above is that which should be used in C/C++: this is opposite to
Fortran array index ordering. For Python you should reverse the order of the indices for the 2/3/4-
dimensional array arguments. It may also be more efficient to ensure that Python stores the arrays in
Fortran-contiguous order. See the Python, C and C++ examples which illustrate how to declare the
profile data arrays.

See Annex J and table 7.2 in the user guide for information about profile variables (the names in the
table above relate to the names in the Fortran profile structure) and which variables are used in
which circumstances. All arguments must be supplied to the interface, but if particular variables are
not used in the simulations you are performing the arrays can just be initialised with zeros.

34

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Surface emissivity/reflectance

You should refer to the user guide section 8.3 to understand how RTTOV treats surface emissivity
and reflectance.

The surfemisrefl(0,:,:), surfemisrefl(1,:,:), and surfemisrefl(2,:,:) arrays are used to control the input
or calculation of surface emissivities, BRDFs, and diffuse reflectances respectively for all channels
for each profile. If you provide non-negative (i.e. >=0) values for any channel then the
corresponding elements of calc_emis, calc_brdf, and/or calc_diffuse_refl will be set to false for that
channel and the supplied value is used for the surface emissivity (or BRDF). If a value in
surfemisrefl(0/1/2,:,:) is negative then calc_emis/calc_brdf/calc_diffuse_refl will be set to true.

If you wish to use the atlases you can call the rttov_get_emisbrdf subroutine to obtain the emissivity
or BRDF values which should be passed into RTTOV via the surfemisrefl(0/1,:,:) arrays.

The surfemisrefl(3,:,:) array is used to specify the surface specularity which is only used with the
RTTOV lambertian option. Finally, the surfemisrefl(4,:,:) array is used to specify the per-channel
effective skin temperatures which are used only with the use_tskin_eff option.

Specifying gas, aerosol and hydrometeor profiles

RTTOV coefficient files support varying numbers of trace gases (see section 3 of the user guide). In
addition, scattering simulations using pre-defined optical properties (stored in aertable and/or
hydrotable files, see user guide section 8.4) require one or more profiles of hydrometeor and aerosol
concentrations, one or more hydro (cloud) fraction profiles for hydrometeor simulations, and
optionally hydro Deff profiles for UV/VIS/IR hydrometeor simulations. Any or all of these are
supplied to the interface using the gases array.

The list of gas, aerosol and hydrometeor inputs you are passing into RTTOV are specified in the
gas_id array. There is one element per input variable which should contain the corresponding ID for
that variable (see appendix K for the list of IDs). The gases array should then be populated with the
appropriate concentrations in the corresponding order.

The gas_id array must always contain at least the water vapour ID (1) because this is a mandatory
input for RTTOV. The order of the variables in gas_id and gases does not matter, but the two arrays
must be consistent with one another.

As an example, suppose we wish to run an IR hydrometeor simulation with the STCO liquid water
cloud and Baum ice cloud types. Water vapour is always mandatory and the hydrometeor
simulations also require a hydro fraction profile. Then the gas_id and gases arrays could be
specified as follows (pseudo-code):

ngases = 4, for gas IDs see appendix K:
1=>q, 201=>hydro_frac, 301=>STCO (hydro type 1), 307=>ice cloud (hydro type 6)
gas_id[:] = [1, 201, 301, 307]

water vapour
gases[0, 0:nprofiles, 0:nlayers] = q[0:nprofiles, 0:nlayers]

hydro_frac
gases[1, 0:nprofiles, 0:nlayers] = hydro_frac[0:nprofiles, 0:nlayers]

35

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

STCO liquid water cloud
gases[2, 0:nprofiles, 0:nlayers] = strat_cont[0:nprofiles, 0:nlayers]

Baum ice cloud
gases[3, 0:nprofiles, 0:nlayers] = ice_cloud[0:nprofiles, 0:nlayers]

Outputs

The output radiances and brightness temperatures (or reflectances for VIS/NIR channels) are
written to the rads and btrefl arrays. These correspond to the radiance%total, radiance%bt and
radiance%refl output arrays: the latter two are “merged” into the btrefl array such that for channels
with wavelengths above 3µm BTs are stored while for other channels reflectances are stored.
Additional subroutine calls are available which give access to the emissivities/reflectances used in
the simulations and to all of the RTTOV radiance, transmittance, and other outputs, assuming the
relevant wrapper options were set (store_emis_refl, store_rad, store_rad2, store_trans,
store_diag_output, store_emis_terms): see section 6.1 and appendix L.

6.5. Calling the RTTOV K model

The RTTOV K model interface is similar in many ways to the direct model interface: arguments
with the same name behave in exactly the same way as described in the previous section. The K call
has some additional arguments to hold the input BT and/or radiance perturbations and the output
profile variable Jacobians. The interface is described below with details given only for the K
arguments not present in the interface for rttov_call_direct:

rttov_call_k(err, inst_id, channel_list, &
 datetimes, angles, surfgeom, &
 surface_fraction, surface_fraction_k, surftype, &
 skin, skin_k, near_surface, near_surface_k, &
 simplecloud, simplecloud_k, clwde_param, icede_param, &
 hydro_frac_eff, hydro_frac_eff_k, zeeman, &
 p_half, p_half_k, p, p_k, t, t_k, &
 gas_units, mmr_hydro, mmr_aer, &
 gas_id, gases, gases_k, surfemisrefl, surfemisrefl_k, &
 btrefl, rads, bt_k, rads_k, zef_k, &
 nchannels, ngases, nlevels, nprofiles, nsurfaces)

Argument Type Intent Description

surface_fraction_k(nprofiles,
nsurfaces,nchannels)

Real inout Calculated Jacobians for surface fractions. The values for the
final surface index (nsurfaces) are always zero because the
surface fraction for the final surface is not specified by the user.

skin_k(nprofiles,nsurfaces,
nchannels,9)

Real inout Calculated Jacobians for (skin%t, skin%salinity, skin
%snow_fraction*, skin%foam_fraction, skin%fastem(1:5)).
* snow_fraction is not active in the RTTOV K model so the
corresponding Jacobian is always zero.

near_surface_k(nprofiles,nsurfaces,
nchannels,5)

Real inout Calculated Jacobians for (t2m, q2m,wind_u10m, wind_v10m,
wind_fetch).

simplecloud_k(nprofiles,nchannels,2) Real inout Calculated Jacobians for (ctp, cfraction).

36

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

hydro_frac_eff_k(nprofiles,
nchannels)

Real inout Calculated Jacobians for hydro_frac_eff.

p_half_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for pressure half-levels.

p_k(nprofiles,nchannels,nlayers) Real inout Calculated Jacobians for pressure full-levels.

t_k(nprofiles,nchannels,nlayers) Real inout Calculated Jacobians for temperature.

gases_k(ngases,nprofiles,nchannels,
nlayers)

Real inout Calculated Jacobians for gas, aerosols and hydrometeors,
variable order matches the input gas_id and gases arrays, see
above.

surfemisrefl_k(5,nprofiles,nsurfaces,
nchannels)

Real inout Calculated Jacobians for surface emissivity, BRDF, diffuse
reflectance, specularity, and effective Tskin.

btrefl_k(nprofiles,nchannels) Real in Input BT (channels are wavelengths > 3µm) or reflectance
(wavelengths < 3µm) perturbations.

rads_k(nprofiles,nchannels) Real in Input radiance perturbations.

zef_k(nprofiles,nchannels,nlayers) Real in Input radar reflectivity perturbations.

Notes:

The user guide provides more detailed information on calling the RTTOV K model. For channels at
wavelengths greater than 3µm the input perturbations are supplied in brightness temperature
(btrefl_k) if opts%config%adk_bt is set to true in the options, otherwise perturbations are supplied
in radiance (rads_k). For channels at wavelengths less than 3µm the input perturbations are supplied
in relectance (btrefl_k) if opts%config%adk_refl is set to true in the options, otherwise
perturbations are supplied in radiance (rads_k). It is safe to set input perturbations in both btrefl_k
and rads_k for all channels: RTTOV will use the appropriate perturbation for each channel based on
the setting of the adk_bt and adk_refl options.

For radar simulations, you would typically want to set btrefl_k and rads_k to zero, and specify the
reflectivity perturbations in zef_k (potentially for one layer at a time: see the user guide). The
radar_k_azef wrapper option determines whether the input perturbations are applied to attenuated
(true) or unattenuated (false) reflectivities.

The user guide advises that most Jacobian variables/structures should be initialised to zero before
calling the K model: the wrapper takes care of this, so you only need to specify the non-zero
perturbations as described above.

37

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

6.6. Calling the RTTOV direct model with explicit optical properties

Section 8.4.11 of the user guide describes scattering simulations with explicit optical properties. For
scattering simulations using only pre-defined optical properties in aertable/hydrotable files see
section 6.4 above. When calling this interface either opts%scatt%hydrometeors or opts%scatt
%aerosols (or both) must be true and the corresponding opts%scatt%user_hydro_opt_param or opts
%scatt%user_aer_opt_param (or both) must be true. You can use pre-defined optical properties
from the relevant optical property file for hydrometeors or aerosols and supply explicit optical
properties for the other via this interface: follow the procedure described in section 6.4 above for
the pre-defined hydrometeor/aerosol optical properties. The interface is as follows:

rttov_call_direct_scatt_optp(&
 err, inst_id, channel_list, &
 datetimes, angles, surfgeom, &
 surface_fraction, surftype, skin, near_surface, &
 clwde_param, icede_param, hydro_frac_eff, zeeman, &
 p_half, p, t, &
 gas_units, mmr_hydro, mmr_aer, gas_id, gases, &
 aer_phangle, aer_esba, aer_lcoef, aer_pha, &
 hydro_phangle, hydro_esba, hydro_lcoef, hydro_pha, &
 surfemisrefl, btrefl, rads, &
 nchannels, ngases, nlevels, nprofiles, nsurfaces, &
 aer_nphangle, aer_nmom, hydro_nphangle, hydro_nmom)

This subroutine call is similar to rttov_call_direct except for the additional optical property
inputs. The simplecloud input is not present because it does not pertain to full scattering
simulations. All other common inputs are identical.

There are additional optical parameter inputs: these are provided separately for aerosols and
hydrometeors. Optical property profiles are provided for each layer, for each channel being
simulated, for each profile. You can call this subroutine for any subset of channels read from the
coefficient file, but your optical property arrays must correspond to this channel_list argument. The
inputs are described in the table below are for aerosols: the hydrometeor ones are identical. See the
RTTOV user guide for full information about these inputs, their units, and when each is required.

Argument Type Description

aer_esba(4,nprofiles,nchannels,
nlayers)

Real Extinction coefficients (aer_esba(1,:,:,:)), singe-scattering albedos
(aer_esba(2,:,:,:)), bpr parameters (aer_esba(3,:,:,:)), and asymmetry
parameters (aer_esba(4,:,:,:)). See below for how to calculate bpr and
asymmetry parameters.

aer_nphangle Integer Number of angles on which phase functions are defined. If solar radiation is
not active this can be 1. (not required in Python).

aer_phangle(aer_nphangle) Real Angle grid on which phase functions are defined (degrees). First value must
be 0° and final value must be 180°.

aer_pha(nprofiles,nchannels,
nlayers,aer_nphangle)

Real Azimuthally-averaged phase functions normalised such that the integral
over all scattering angles is 4π. Phase functions are only used when solar
radiation is active, and are only required for solar-affected channels.

38

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

aer_nmom Integer Number of Legendre coefficients provided for each phase function. If the
DOM solver is not being used this can be zero. For DOM calculations this
should be at least as large as the number of DOM streams being used (not
required in Python).

aer_lcoef(nprofiles,nchannels,
nlayers,aer_nmom+1)

Real Legendre coefficients corresponding to each phase function. Note the final
dimension is aer_nmom+1: this is consistent with the RTTOV internal
structures: the “zeroth” coefficient is always 1. Legendre coefficients are
only required for all channels for which the DOM solver is being used. See
below for how to calculate Legendre coefficients.

Notes:

For hydrometeor simulations you must always supply a hydro fraction profile: this is done via the
“gases” input array as described in section 6.4.

For layers containing no hydrometeor/aerosol (i.e., where the corresponding extinction is zero), all
other parameters including the phase function values and Legendre coefficients can be zero.

If hydrometeors or aerosols are not active in the simulation (i.e., hydrometeors or aerosols is false)
you can provide minimal arrays of zeros for the corresponding hydrometeors/aerosol inputs. This
can be achieved by setting the nphangle dimension to 1 and the nmom dimension to zero (recalling
that the lcoef input has dimension nmom+1). Hydrometeor and aerosol nphangle and nmom
dimensions are independent.

Wrappers are provided for the RTTOV subroutines which calculate bpr values, asymmetry
parameters, and Legendre coefficients from phase functions. The bpr calculation in particular is
relatively expensive and as such is probably not suitable for calling within an operational system. In
practice you may want to calculate the required bpr values off-line and store them for use in
simulations.

rttov_bpr(err, phangle, pha, bpr, nthreads, nphangle)

Argument Type Intent Description

err Integer out Return code, non-zero value implies error.

phangle(nphangle) Real in Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

pha(nphangle) Real in Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π.

bpr Real out Calculated bpr value.

nthreads Integer in Number of OpenMP threads to use in the calculation (has no
effect unless RTTOV is compiled with OpenMP).

nphangle Integer in Number of angles on which phase functions are defined (not
required in Python).

39

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

rttov_asym(err, phangle, pha, asym, nphangle)

Argument Type Intent Description

err Integer out Return code, non-zero value implies error.

phangle(nphangle) Real in Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

pha(nphangle) Real in Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π.

asym Real out Calculated asymmetry parameter.

nphangle Integer in Number of angles on which phase functions are defined (not
required in Python).

rttov_lcoef(err, phangle, pha, lcoef, ngauss, nphangle, nmom)

Argument Type Intent Description

err Integer out Return code, non-zero value implies error.

phangle(nphangle) Real in Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

pha(nphangle) Real in Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π.

lcoef(nmom+1) Real inout Calculated Legendre coefficients.

ngauss Integer in Legendre coefficients are calculated using Gaussian
quadrature. By default the quadrature size is 1000 points. You
can specify a different quadrature size using this parameter.
Note that the input value must be greater than or equal to
nmom otherwise it is ignored.

nphangle Integer in Number of angles on which phase functions are defined (not
required in Python).

nmom Integer in Number of Legendre coefficients to calculate. For DOM
calculations this should be at least as large as the number of
DOM streams being used (not required in Python).

6.7. Calling the RTTOV K model with explicit optical properties

This is very similar to the direct model interface described in the previous section and in terms of
the Jacobian calculations it is very similar to the K model interface described in section 6.5 above.

40

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

rttov_call_k_scatt_optp(&
 err, inst_id, channel_list, &
 datetimes, angles, surfgeom, &
 surface_fraction, surface_fraction_k, surftype, &
 skin, skin_k, near_surface, near_surface_k, &
 clwde_param, icede_param, hydro_frac_eff, hydro_frac_eff_k, zeeman, &
 p_half, p_half_k, p, p_k, t, t_k, &
 gas_units, mmr_hydro, mmr_aer, gas_id, gases, gases_k, &
 aer_phangle, aer_esba, aer_esba_k, aer_lcoef, aer_pha, &
 hydro_phangle, hydro_esba, hydro_esba_k, hydro_lcoef, hydro_pha, &
 surfemisrefl, surfemisrefl_k, &
 btrefl, rads, bt_k, rads_k, zef_k, &
 nchannels, ngases, nlevels, nprofiles, nsurfaces, &
 aer_nphangle, aer_nmom, hydro_nphangle, hydro_nmom)

The K variables are exactly the same as those described in section 6.5 above. The additional output
aer_esba_k and hydro_esba_k contain the Jacobians of the corresponding input optical properties.
The Legendre coefficients and phase functions are not implemented as “active” variables in the
RTTOV K model so Jacobians are not calculated for them.

6.8. Deallocating memory

When you have finished calling RTTOV you should make a call to release the memory allocated by
the wrapper.

If you simply wish to free all memory allocated by the wrapper for all loaded instruments and
atlases you can call:

rttov_drop_all(err)

Here err is the usual intent(out) return code (non-zero implies an error condition).

Alternatively you can deallocate memory for specific instruments or atlases.

You can deallocate the memory for a single instrument using:

rttov_drop_inst(err, inst_id)

Again err is the return code and inst_id is the ID of the instrument to deallocate.

You can deallocate memory for a specific atlas using:

rttov_drop_atlas(err, atlas_wrap_id)

The atlas_wrap_id argument is the wrapper ID for previously loaded atlas data and err is the return
code.

41

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

6.9. Additional wrapper routines

There are some additional wrapper routines providing access to additional RTTOV functionality.

Two subroutines are available which can be used to determine the RTTOV major and minor version
numbers:

rttov_get_major_version(major_version)
rttov_get_minor_version(minor_version)

In both cases the arguments are INTENT(OUT) integers.

The following routine wraps the rttov_aer_clim_prof Fortran subroutine (see user guide Annex I):

rttov_get_aer_clim_prof(p_half, t, q, gas_units, mmr_aer, latitude, elevation, &
 index, aer_prof, nlevels, naer_opac)

This is used to obtain climatological aerosol profiles based on the OPAC components. These can
then be used in aerosol simulations with the OPAC aertable files by assigning the output profiles to
the corresponding aerosol indices in the gas_id and gases arrays.

The arguments are as follows:

Argument Type Intent Description

p_half(nlevels) Real in Pressure half-levels (hPa).

t(nlayers) Real in Temperatures on pressure full-levels (K).

q(nlayers) Real in Water vapour on pressure full-levels (units according to
gas_units).

gas_units Integer in Units for input q: 2=>ppmv over moist air, 1=>kg/kg over
moist air, 0=>ppmv over dry air.

mmr_aer Integer
0 or 1

in Units for output aerosols: 0=>cm^-3, 1=>kg/kg.

latitude Real in Latitude of profile (degrees).

elevation Real in Surface elevation (km).

index Integer in Index of climatological scenario (1-10, see user guide).

aer_prof(nlayers,naer_opac) Real inout Output climatological aerosol profiles.

nlevels Integer in Number of pressure half-levels, nlayers=nlevels-1 (not
required in Python).

naer_opac Integer in Number of aerosol species in OPAC aertable files, this must
always be 13, but only aerosol indices 1-10 are populated (not
required in Python).

42

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

6.10. Specific information for Python

As noted above, it is strongly recommended to use pyrttov (section 3) to run RTTOV from
Python rather than using these underlying function calls. The documentation for Python here is
included only for completeness.

By default integers are 32-bit (e.g. numpy.int32) and reals are 64-bit (e.g. numpy.float64).

The error return code arguments (err) which are INTENT(OUT) appear as return values to the
Python function call and as such do not appear among the function arguments. This also applies to
inst_id in calls to rttov_load_inst.

In addition the array size arguments to the interface routines are implicit in the Python interface:
they are calculated from the dimensions of the input arrays and do not appear among the function
arguments.

For example in Python the wrapper initialisation call looks like this:

> inst_id = rttov_load_inst(opts_str, channels)

Note inst_id is the return value and nchannels is implicitly determined from len(channels) by the
interface and is not present as an argument.

You should declare all Python arrays with array indices in the opposite order to those listed
above in this section (6). You may also want to ensure they are in Fortran-contiguous order in
memory by supplying the order='F' argument to the Numpy array initialisation calls. The example
code provides illustrations of how to declare array arguments.

6.11. Specific information for C/C++

As noted above, if calling RTTOV from C++ it is strongly recommended to use the class-based
interface described in section 3. These underlying function calls are documented here specifically
for calling RTTOV from other languages such as C.

By default integers are 32-bit (e.g. C int) and reals are 64-bit (e.g. C double).

When passing a character string argument to Fortran from C/C++ it is necessary to include the
string length as an additional argument. Usually this is appended as the final argument in the call,
but for some compilers it may need to be supplied directly following the string argument. See the
example C and C++ code: this applies to rttov_load_inst, rttov_set_options and the
atlas initialisation subroutines.

The C-style array index ordering is opposite to that used in Fortran. You should allocate arrays with
dimensions as shown in this document to ensure data is passed correctly between your C or C++
code and the RTTOV Fortran code.

All interface subroutine names should have an underscore appended '_' as in
src/wrapper/rttov_c_interface.h. See this header file for interfaces to all wrapper subroutines.

43

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix A: C++ RttovSafe and Rttov classes
The majority of the methods used for calling RTTOV are the same for both the RttovSafe and
Rttov classes. The only one which differs is the method for associating profile data with the
RttovSafe or Rttov instance.

Constructors:

RttovSafe ()
RttovSafe class constructor method.

Rttov ()
Rttov class constructor method.

Associating profile data with an RttovSafe object:

void setTheProfiles (std::vector< rttov::Profile > &theProfiles)
Associate a vector of Profile objects with this RttovSafe object; carries out checks on profiles before
calling RTTOV to help prevent errors: all profiles must be have the same number of levels with the same
content (gases, hydrometeors, aerosols) and have the same gas_units.

Associating profile data with an Rttov object:

void setProfiles (rttov::Profiles *profiles)
Associate a Profiles object with this Rttov object; this is fast, but does not carry out any checks on
profiles before calling RTTOV.

Members common to RttovSafe and Rttov classes:

Options options
The Options instance associated with this Rttov/RttovSafe object. You should set the options associated
with this instrument using the relevant members of this Options instance.

Methods common to RttovSafe and Rttov classes:

int getMajorVersion() const
Return the RTTOV major version number.

int getMinorVersion() const
Return the RTTOV minor version number.

void updateOptions ()
Update RTTOV options for the currently loaded instrument.

void printOptions ()
Print RTTOV options for the currently loaded instrument.

void setFileCoef (const string &fileCoef)
Set the gas optical depth coefficient filename.

void setFileAertable (const string &fileAertable)

44

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Set the aerosol optical property filename.

void setFileHydrotable (const string &fileHydrotable)
Set the hydrometeor optical property filename.

void setFileMfasisNN (const string &fileMfasisNN)
Set the MFASIS-NN coefficient filename.

void setFileMwPol (const string &fileMwPol)
Set the ARO-scaled polarisation LUT filename.

void loadInst ()
Load instrument with all channels.

void loadInst (const vector< int > &channels)
Load instrument for a list of channels; the method setFileCoef() must have been called previously.

bool isCoeffsLoaded () const
Return true if instrument is loaded.

int getNchannels () const
Return the number of loaded channels.

int getCoeffsNlevels ()
Return the number of levels of the coefficient file.

double * getWaveNumbers ()
Return the channel central wavenumbers of the coefficient file.

bool isProfileSet () const
Return true if profiles have been associated.

void setSurfEmisRefl (double *surfemisrefl)
Set pointer to array containing input/output surface emissivity, BRDF, diffuse reflectance, specularity,
and effective Tskin values; this must be previously allocated a double array of dimensions [5][nprofiles]
[nsurfaces][nchannels]; this is used to pass emissivity/reflectance/specularity/effective Tskin values into
RTTOV; if this is not called the Rttov object will allocate an array containing negative values indicating
that RTTOV should supply emissivtiy/reflectance values.

void setAerEsba (double *esba)
Set the aerosol extinction coefs, single-scattering albedos, bpr parameters, and asymmetry parameters.
Dimensions of esba are [4][nprofiles][nchannels][nlayers].

void setAerPha (int nphangle, double *phangle, double *pha)
Set the aerosol phase functions. Dimensions of phangle [nphangle] and dimensions of pha are
[nprofiles][nchannels][nlayers][nphangle].

void setAerLcoef (int nmom, double *lcoef)
Set the aerosol phase function Legendre coefficients. Dimensions of lcoef are [nprofiles][nchannels]
[nlayers][nmom+1].

void setHydroEsba (double *esba)
Set the hydrometeor extinction coefs, single-scattering albedos, bpr parameters, and asymmetry
parameters. Dimensions of esba are [4][nprofiles][nchannels][nlayers].

void setHydroPha (int nphangle, double *phangle, double *pha)
Set the hydrometeor phase functions. Dimensions of phangle [nphangle] and dimensions of pha are
[nprofiles][nchannels][nlayers][nphangle].

void setHydroLcoef (int nmom, double *lcoef)

45

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Set the hydrometeor phase function Legendre coefficients. Dimensions of lcoef are [nprofiles]
[nchannels][nlayers][nmom+1].

double calcBpr (int nphangle, double *phangle, double *pha)
Calculate bpr parameter for given phase function pha defined on angles phangle. The angles are in
degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced.

double calcAsym (int nphangle, double *phangle, double *pha)
Calculate asymmetry parameter for given phase function pha defined on angles phangle. The angles are
in degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced.

void calcLcoef (int nphangle, double *phangle, double *pha, int nmom, double *lcoef, int ngauss)
Calculate Legendre coefficients for given phase function pha defined on angles phangle. The angles are
in degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced. Populates
lcoef, an array of size (nmom+1). If ngauss >= nmom, then ngauss will determine the size of the
Gaussian quadrature used in the calculation. Set to zero to use the default (1000).

void setZefK (double *zef_k)
Set input reflectivity perturbations for radar Jacobian simulations. Dimensions of zef_k are [nprofiles]
[nchannels][nlayers].

void runDirect ()
Run the RTTOV direct model for all channels.

void runDirect (const vector< int > &channels)
Run the RTTOV direct model for a list of channels.

void runK ()
Run the RTTOV K model for all channels.

void runK (const vector< int > &channels)
Run the RTTOV K model for a list of channels.

const double * getSurfEmisRefl () const
Return a pointer to an array of dimensions [5][nprofiles][nsurfaces][nchannels] containing input values
of surface emissivity, BRDF, diffuse reflectance, specularity, and effective Tskin; this array can be
initialised by the user and set by calling the setSurfEmisRefl method; alternatively if the
emissivity/reflectance array is allocated by the Rttov object it is deleted at the next run or when the Rttov
instance is destroyed.

const double * getBtRefl () const
Return a pointer to an array of dimensions [nprofiles][nchannels] filled with computed brightness
temperatures and reflectances by the previous run; this array is allocated by the Rttov object and is
destroyed when a new run is performed or if the instance is destroyed.

const double * getRads () const
Return a pointer to an array of dimensions [nprofiles][nchannels] filled with computed radiances by the
previous run; this array is allocated by the Rttov object and is destroyed when a new run is performed or
if the instance is destroyed.

std::vector< double > getBtRefl (const int profile)
Return vector of brightness temperatures/reflectances computed by the previous run for the given profile
number.

std::vector< double > getRads (const int profile)
Return a vector of radiances computed by the previous run for the given profile number.

std::vector< double > getSurfEmis (int profile, int surface)

46

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Return surface emissivities used in the simulations for a given profile and surface, requires
store_emis_refl true.

std::vector< double > getSurfBrdf (int profile, int surface)
Return surface BRDFs used in the simulations for a given profile and surface, requires store_emis_refl
true.

std::vector< double > getSurfDiffuseRefl (int profile, int surface)
Return surface diffuse reflectances used in the simulations for a given profile and surface, requires
store_emis_refl true.

std::vector< double > getTauTotal (int profile)
Return RTTOV transmission tau_total output array of size [nchannels] for given profile, requires
store_trans true.

std::vector< double > getTauLevels (int profile, int channel)
Return RTTOV transmission tau_levels output array of size [nlevels] for given profile and channel,
requires store_trans true.

std::vector< double > getTauSunTotalPath1 (int profile)
Return RTTOV transmission tausun_total_path1 output array of size [nchannels] for given profile,
requires store_trans true.

std::vector< double > getTauSunLevelsPath1 (int profile, int channel)
Return RTTOV transmission tausun_levels_path1 output array of size [nlevels] for given profile and
channel, requires store_trans true.

std::vector< double > getTauSunTotalPath2 (int profile)
Return RTTOV transmission tausun_total_path2 output array of size [nchannels] for given profile,
requires store_trans true.

std::vector< double > getTauSunLevelsPath2 (int profile, int channel)
Return RTTOV transmission tausun_levels_path2 output array of size [nlevels] for given profile and
channel, requires store_trans true.

std::vector< double > getTauTotalCld (int profile)
Return RTTOV transmission tau_total_cld output array of size [nchannels] for given profile, requires
store_trans true.

std::vector< double > getTauLevelsCld (int profile, int channel)
Return RTTOV transmission tau_levels_cld output array of size [nlevels] for given profile and channel,
requires store_trans true.

std::vector< double > getRadClear (int profile)
Return RTTOV radiance clear output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getRadTotal (int profile)
Return RTTOV radiance total output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getBtClear (int profile)
Return RTTOV radiance bt_clear output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getBt (int profile)
Return RTTOV radiance bt output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getReflClear (int profile)

47

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Return RTTOV radiance refl_clear output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getRefl (int profile)
Return RTTOV radiance refl output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getRadCloudy (int profile)
Return RTTOV radiance cloudy output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getOvercast (int profile, int channel)
Return RTTOV radiance overcast output array of size [nlayers] for given profile and channel, requires
store_rad true.

std::vector< double > getBtOvercast (int profile, int channel)
Return RTTOV radiance bt_overcast output array of size [nlayers] for given profile and channel,
requires store_rad true.

std::vector< int > getRadQuality (int profile)
Return RTTOV radiance quality flag array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getRad2UpClear (int profile)
Return RTTOV radiance2 upclear output array of size [nchannels] for given profile, requires store_rad2
true.

std::vector< double > getRad2DnClear (int profile)
Return RTTOV radiance2 dnclear output array of size [nchannels] for given profile, requires store_rad2
true.

std::vector< double > getRad2ReflDnClear (int profile)
Return RTTOV radiance2 refldnclear output array of size [nchannels] for given profile, requires
store_rad2 true.

std::vector< double > getRad2Up (int profile, int channel)
Return RTTOV radiance2 up output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

std::vector< double > getRad2Down (int profile, int channel)
Return RTTOV radiance2 down output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

std::vector< double > getRad2Surf (int profile, int channel)
Return RTTOV radiance2 surf output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

std::vector< double > getZef (int profile, int channel)
Return RTTOV reflectivity zef output array of size [nlayers] for given profile and channel for radar
simulations.

std::vector< double > getAZef (int profile, int channel)
Return RTTOV reflectivity azef output array of size [nlayers] for given profile and channel for radar
simulations.

std::vector< double > getDiagOutputGeometricHeight (int profile)
Return RTTOV diagnostic output geometric_height output array of size [nlayers] for given profile,
requires store_diag_output true.

std::vector< double > getDiagOutputGeometricHeightHalf (int profile)

48

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Return RTTOV diagnostic output geometric_height_half output array of size [nlevels] for given profile,
requires store_diag_output true.

double getDiagOutputHydroFracEff (int profile)
Return RTTOV diagnostic output hydro_frac_eff output for given profile, requires store_diag_output
true.

double getEmisTermsBsfc (int profile, int channel)
Return emissivity retrieval bsfc output for given profile and channel, requires store_emis_terms true.

std::vector< double > getEmisTermsColumnWeight (int profile, int channel)
Return emissivity retrieval column_weight output array of size [ncolumns] for given profile and channel,
requires store_emis_terms true. The value of ncolumns is 1 for non-hydrometeor scattering simulations,
2 for hydrometeor scattering with two-column cloud overlap, and 2*nlayers+1 for hydrometeor
scattering with max/random overlap.

std::vector< double > getEmisTermsTauSfc (int profile, int channel)
Return emissivity retrieval tau_sfc output array of size [ncolumns] for given profile and channel,
requires store_emis_terms true.

std::vector< double > getEmisTermsRadUp (int profile, int channel)
Return emissivity retrieval rad_up output array of size [ncolumns] for given profile and channel,
requires store_emis_terms true.

std::vector< double > getEmisTermsRadDown (int profile, int channel)
Return emissivity retrieval rad_down output array of size [ncolumns] for given profile and channel,
requires store_emis_terms true.

std::vector< double > getPHalfK (int profile, int channel)
Return the computed pressure half-level Jacobians for a given profile and channel.

std::vector< double > getPK (int profile, int channel)
Return the computed pressure full-level Jacobians for a given profile and channel.

std::vector< double > getTK (int profile, int channel)
Return computed temperature Jacobians for a given profile and channel.

std::vector< double > getItemK (rttov::itemIdType, int profile, int channel)
Return computed gas, hydrometeor, and aerosol Jacobian values for a given profile and channel.

std::vector< double > getSurfaceFractionK (int profile, int channel)
Return computed surface fraction Jacobians for a given profile and channel.

std::vector< double > getSkinK (int profile, int surface, int channel)
Return computed skin variable Jacobians for a given profile, surface and channel.

std::vector< double > getNearSurfaceK (int profile, int surface, int channel)
Return computed near-surface variable Jacobian for a given profile, surface and channel.

std::vector< double > getSimpleCloudK (int profile, int channel)
Return computed simple cloud variable Jacobians for a given profile and channel.

std::vector< double > getHydroFracEffK (int profile)
Return computed hydro_frac_eff variable Jacobians for a given profile.

std::vector< double > getSurfEmisK (int profile, int surface)
Return computed surface emissivity Jacobians for a given profile and surface.

std::vector< double > getSurfBrdfK (int profile, int surface)
Return computed surface BRDF Jacobians for a given profile and surface.

49

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

std::vector< double > getSurfDiffuseReflK (int profile, int surface)
Return computed surface diffuse reflectance Jacobians for a given profile and surface.

std::vector< double > getSpecularityK (int profile, int surface)
Return computed surface specularity Jacobians for a given profile and surface.

std::vector< double > getTskinEffK (int profile, int surface)
Return computed effective Tskin Jacobians for a given profile and surface.

std::vector< double > getAerExtK (int profile, int channel)
Return computed aerosol extinction coeffiicent Jacobians for a given profile and channel.

std::vector< double > getAerSsaK (int profile, int channel)
Return computed aerosol single-sca ttering albedo Jacobians for a given profile and channel.

std::vector< double > getAerBprK (int profile, int channel)
Return computed aerosol bpr parameter Jacobians for a given profile and channel.

std::vector< double > getAerAsymK (int profile, int channel)
Return computed aerosol asymmetry parameter Jacobians for a given profile and channel.

std::vector< double > getHydroExtK (int profile, int channel)
Return computed hydrometeor extinction coeffiicent Jacobians for a given profile and channel.

std::vector< double > getHydroSsaK (int profile, int channel)
Return computed hydrometeor single-scattering albedo Jacobians for a given profile and channel.

std::vector< double > getHydroBprK (int profile, int channel)
Return computed hydrometeor bpr parameter Jacobians for a given profile and channel.

std::vector< double > getHydroAsymK (int profile, int channel)
Return computed hydrometeor asymmetry parameter Jacobians for a given profile and channel.

50

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix B: Python Rttov class
Methods:

Rttov ()
Rttov class constructor method.

updateOptions ()
Update RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

printOptions ()
Print RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

loadInst (channels=None)
Load instrument for a list of channels if array of channel numbers is supplied or for all channels if
channels argument is omitted; the FileCoef member must have been set previously. Throws an exception
if an error is encountered.

runDirect (channels=None)
Run the RTTOV direct model for the supplied list of channels or for all loaded channels if the channels
argument is omitted. Throws an exception if an error is encountered.

runK (channels=None)
Run the RTTOV K model for the supplied list of channels or for all loaded channels if the channels
argument is omitted. Throws an exception if an error is encountered.

float array getItemK (gas_id)
Return computed gas, hydrometeor and aerosol Jacobian values. See Appendix J for the itemIdType
class that can be used to obtain the IDs). If the requested Jacobian was not calculated this returns None,
otherwise the result will be an array with dimensions [nprofiles][nchannels][nlayers]. It is possible (and
recommended) to access each gas, hydrometeor or aerosol variable's Jacobians directly (see members
below).

float array getAerNK (n)
Return computed Jacobian for aerosol species n (1<=n<=30). If the requested Jacobian was not
calculated this returns None, otherwise the result will be an array with dimensions [nprofiles]
[nchannels][nlayers].

float array getHydroNK (n)
Return computed Jacobian for hydrometeor type n (1<=n<=30). If the requested Jacobian was not
calculated this returns None, otherwise the result will be an array with dimensions [nprofiles]
[nchannels][nlayers].

float array getHydroFracNK (n)
Return computed Jacobian for hydro fraction for hydrometeor type n (1<=n<=30). If the requested
Jacobian was not calculated this returns None, otherwise the result will be an array with dimensions
[nprofiles][nchannels][nlayers].

float array getHydroDeffNK (n)
Return computed Jacobian for hydro Deff for hydrometeor type n (1<=n<=30). If the requested
Jacobian was not calculated this returns None, otherwise the result will be an array with dimensions
[nprofiles][nchannels][nlayers].

51

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float calcBpr (phangle, pha)
Calculate bpr parameter for given phase function pha defined on angles phangle. The angles are in
degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced.

float calcAsym (phangle, pha)
Calculate asymmetry parameter for given phase function pha defined on angles phangle. The angles are
in degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced.

float array calcLcoef (phangle, pha, nmom, ngauss=0)
Calculate Legendre coefficients for given phase function pha defined on angles phangle. The angles are
in degrees running from 0° to 180°, and the angle grid does not need to be evenly spaced. Returns an
array of size (nmom+1). If ngauss >= nmom, then ngauss will determine the size of the Gaussian
quadrature used in the calculation. Set to zero to use the default (1000).

Members:

Options Options
The Options instance associated with this Rttov object. You should set the options associated with this
instrument by assigning to the members of this Options instance.

Profiles Profiles
The Profiles instance associated with this Rttov object; you should declare an instance of Profiles,
populate it with profile data and assign it to this member.

int MajorVersion
The RTTOV major version number (read-only).

int MinorVersion
The RTTOV minor version number (read-only).

string FileCoef
The gas optical depth coefficient filename.

string FileAertable
The aerosol optical property filename.

string FileHydrotable
The hydrometeor optical property filename.

string FileMfasisNN
The MFASIS-NN coefficient filename.

string FileMwPol
The ARO-scaled polarisation LUT filename.

bool CoeffsLoaded
True if instrument is loaded (read-only).

int Nchannels
The number of loaded channels (read-only).

int CoeffsNlevels
The number of levels of the coefficient file (read-only).

float WaveNumbers
Return the channel central wavenumbers of the coefficient file.

52

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float array SurfEmisRefl
Array containing input surface emissivity and reflectance values of dimensions [5][nprofiles][nsurfaces]
[nchannels]; this is used to pass emissivity/reflectance/specularity/effective Tskin values into RTTOV; if
this is not specified before calling RTTOV the Rttov object will create one with all elements set negative
(i.e., with calc_emis, calc_brdf, and calc_diffuse_refl set to true).

float array AerEsba
The aerosol extinction coefs, single-scattering albedos, bpr parameters, and asymmetry parameters.
Dimensions are [4][nprofiles][nchannels][nlayers].

float array AerPhangle
The aerosol phase function angles. Dimensions are [aer_nphangle].

float array AerPha
The aerosol phase functions. Dimensions are [nprofiles][nchannels][nlayers][aer_nphangle].

float array AerLcoef
The aerosol phase function Legendre coefficients. Dimensions are [nprofiles][nchannels][nlayers]
[aer_nmom+1].

float array HydroEsba
The hydrometeor aextinction coefs, single-scattering albedos, bpr parameters, and asymmetry
parameters . Dimensions are [4][nprofiles][nchannels][nlayers].

float array HydroPhangle
The hydrometeor phase function angles. Dimensions are [cld_nphangle].

float array HydroPha
The hydrometeor phase functions. Dimensions are [nprofiles][nchannels][nlayers][cld_nphangle].

float array HydroLcoef
The hydrometeor phase function Legendre coefficients. Dimensions are [nprofiles][nchannels][nlayers]
[cld_nmom+1].

float array ZefK
Input reflectivity perturbations for radar Jacobian simulations, dimensions [nprofiles][nchannels]
[nlayers].

float array BtRefl
Brightness temperatures/reflectances computed by the previous run, dimensions [nprofiles][nchannels].

float array Rads
Radiances computed by the previous run, dimensions [nprofiles][nchannels].

float array SurfEmis
Computed surface emissivities used in the simulations, dimensions [nprofiles][nsurfaces][nchannels],
requires store_emis_refl true.

float array SurfBrdf
Computed surface BRDFs used in the simulations, dimensions [nprofiles][nsurfaces][nchannels],
requires store_emis_refl true..

float array SurfDiffuseRefl
Computed surface diffuse reflectances used in the simulations, dimensions [nprofiles][nsurfaces]
[nchannels], requires store_emis_refl true..

float array TauTotal
RTTOV transmission tau_total output array, dimensions [nprofiles][nchannels], requires store_trans

53

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

true.

float array TauLevels
RTTOV transmission tau_levels output array, dimensions [nprofiles][nchannels][nlevels], requires
store_trans true.

float array TauSunTotalPath1
RTTOV transmission tausun_total_path1 output array, dimensions [nprofiles][nchannels], requires
store_trans true.

float array TauSunLevelsPath1
RTTOV transmission tausun_levels_path1 output array dimensions [nprofiles][nchannels][nlevels],
requires store_trans true.

float array TauSunTotalPath2
RTTOV transmission tausun_total_path2 output array, dimensions [nprofiles][nchannels], requires
store_trans true.

float array TauSunLevelsPath2
RTTOV transmission tausun_levels_path2 output array dimensions [nprofiles][nchannels][nlevels],
requires store_trans true.

float array TauTotalCld
RTTOV transmission tau_total_cld output array, dimensions [nprofiles][nchannels], requires
store_trans true.

float array TauLevelsCld
RTTOV transmission tau_levels_cld output array, dimensions [nprofiles][nchannels][nlevels], requires
store_trans true.

float array RadClear
RTTOV radiance clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array RadTotal
RTTOV radiance total output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array BtClear
RTTOV radiance bt_clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Bt
RTTOV radiance bt output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array ReflClear
RTTOV radiance refl_clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Refl
RTTOV radiance refl output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array RadCloudy
RTTOV radiance cloudy output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Overcast
RTTOV radiance overcast output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad
true.

float array BtOvercast
RTTOV radiance bt_overcast output array, dimensions [nprofiles][nchannels][nlayers], requires
store_rad true.

54

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

int array RadQuality
RTTOV radiance quality flag array of size [nprofiles][nchannels], requires store_rad true.

float array Rad2UpClear
RTTOV radiance2 upclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2DnClear
RTTOV radiance2 dnclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2ReflDnClear
RTTOV radiance2 refldnclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2Up
RTTOV radiance2 up output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2
true.

float array Rad2Down
RTTOV radiance2 down output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2
true.

float array Rad2Surf
RTTOV radiance2 surf output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2
true.

float array Zef
RTTOV radar reflectivity zef output array, dimensions [nprofiles][nchannels][nlayers].

float array AZef
RTTOV radar reflectivity azef output array, dimensions [nprofiles][nchannels][nlayers].

float array DiagOutputGeometricHeight
RTTOV diagnostic_output geometric_height output array, dimensions [nprofiles][nlayers], requires
store_diag_output true.

float array DiagOutputGeometricHeightHalf
RTTOV diagnostic_output geometric_height_half output array, dimensions [nprofiles][nlevels], requires
store_diag_output true.

float array DiagOutputHydroFracEff
RTTOV diagnostic_output hydro_frac_eff output array, dimensions [nprofiles], requires
store_diag_output true.

float array EmisTermsBsfc
Emissivity retrieval bsfc output array, dimensions [nprofiles][nchannels], requires store_emis_terms
true.

float array EmisTermsColumnWeight
Emissivity retrieval column_weight output array, dimensions [nprofiles][nchannels][ncolumns],
requires store_emis_terms true. The value of ncolumns is 1 for non-hydrometeor scattering simulations,
2 for hydrometeor scattering with two-column cloud overlap, and 2*nlayers+1 for hydrometeor
scattering with max/random overlap.

float array EmisTermsTauSfc
Emissivity retrieval tau_sfc output array, dimensions [nprofiles][nchannels][ncolumns], requires
store_emis_terms true.

float array EmisTermsRadUp

55

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Emissivity retrieval rad_up output array, dimensions [nprofiles][nchannels][ncolumns], requires
store_emis_terms true.

float array EmisTermsRadDown
Emissivity retrieval rad_down output array, dimensions [nprofiles][nchannels][ncolumns], requires
store_emis_terms true.

float array PHalfK
Computed pressure half-level Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array PK
Computed pressure full-level Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array TK
Computed temperature Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array QK
Computed q Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array O3K
Computed o3 Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array CO2K
Computed co2 Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array N2OK
Computed n2o Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array COK
Computed co Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array CH4K
Computed ch4 Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SO2K
Computed so2 Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array CLWK
Computed clw Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SurfaceFractionK
Computed surface fraction Jacobians, dimensions [nprofiles][nsurfaces-1][nchannels].

float array SkinK
Computed skin variable Jacobians, dimensions [nprofiles][nsurfaces][nchannels][9].

float array NearSurfaceK
Computed near-surface variable Jacobian, dimensions [nprofiles][nsurfaces][nchannels][5].

float array SimpleCloudK
Computed simple cloud variable Jacobians, dimensions [nprofiles][nchannels][2].

float array SurfEmisK
Computed surface emissivity Jacobians, dimensions [nprofiles][nsurfaces][nchannels].

float array SurfBrdfK
Computed surface BRDF Jacobians, dimensions [nprofiles][nsurfaces][nchannels].

float array SurfDiffuseReflK

56

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Computed surface diffuse reflectance Jacobians, dimensions [nprofiles][nsurfaces][nchannels].

float array SpecularityK
Computed surface specularity Jacobians, dimensions [nprofiles][nsurfaces][nchannels].

float array TskinEffK
Computed effective Tskin Jacobians, dimensions [nprofiles][nsurfaces][nchannels].

float array AerEsbaK
Computed Jacobians of aerosol extinction coefs, single-scattering albedos, bpr parameters, and
asymmetry parameters, dimensions [4][nprofiles][nchannels][nlayers].

float array HydroEsbaK
Computed Jacobians of hydrometeor extinction coefs, single-scattering albedos, bpr parameters, and
asymmetry parameters, dimensions [4][nprofiles][nchannels][nlayers].

float array HydroFracEffK
Computed effective hydro fraction Jacobians, dimensions [nprofiles][nchannels].

float array HydroFracNK where N=1, 2, …, 30
Computed Jacobians for hydro fraction for hydrometeor type N, dimensions [nprofiles][nchannels]
[nlayers].

float array HydroNK where N=1, 2, …, 30
Computed Jacobians for hydrometeor type N, dimensions [nprofiles][nchannels][nlayers].

float array HydroDeffNK where N=1, 2, …, 30
Computed Jacobians for hydro Deff for hydrometeor type N, dimensions [nprofiles][nchannels]
[nlayers].

float array AerNK where N=1, 2, …, 30
Computed Jacobians for aerosol type N, dimensions [nprofiles][nchannels][nlayers].

float array HydroFracK
Computed Jacobians for hydro fraction, dimensions [nprofiles][nchannels][nlayers].

float array StcoK
Computed OPAC stco (UV/VIS/IR hydrometeor type 1) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array StmaK
Computed OPAC stma (UV/VIS/IR hydrometeor type 2) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array CuccK
Computed OPAC cucc (UV/VIS/IR hydrometeor type 3) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array CucpK
Computed OPAC cucp (UV/VIS/IR hydrometeor type 4) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array CumaK
Computed OPAC cuma (UV/VIS/IR hydrometeor type 5) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array ClwdK

57

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Computed “cloud liquid Deff” (UV/VIS/IR hydrometeor type 6) Jacobians, dimensions [nprofiles]
[nchannels][nlayers].

float array BaumK
Computed Baum cloud ice (UV/VIS/IR hydrometeor type 7) Jacobians, dimensions [nprofiles]
[nchannels][nlayers].

float array BaranK
Computed Baran cloud ice (UV/VIS/IR hydrometeor type 8) Jacobians, dimensions [nprofiles]
[nchannels][nlayers].

float array ClwDeffK
Computed Clwd type Deff Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array BaumIceDeffK
Computed Baum type Deff Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MWRainK
Computed rain (MW hydrometeor type 1) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MWSnowK
Computed snow (MW hydrometeor type 2) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MWGraupelK
Computed graupel (MW hydrometeor type 3) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MWClwK
Computed cloud liquid water (MW hydrometeor type 4) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array MWCiwK
Computed cloud ice water (MW hydrometeor type 5) Jacobians, dimensions [nprofiles][nchannels]
[nlayers].

float array InsoK
Computed inso (OPAC aerosol type 1) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array WasoK
Computed waso (OPAC aerosol type 2) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SootK
Computed soot (OPAC aerosol type 3) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SsamK
Computed ssam (OPAC aerosol type 4) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SscmK
Computed sscm (OPAC aerosol type 5) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MinmK
Computed minm (OPAC aerosol type 6) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MiamK
Computed miam (OPAC aerosol type 7) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array MicmK
Computed micm (OPAC aerosol type 8) Jacobians, dimensions [nprofiles][nchannels][nlayers].

58

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float array MitrK
Computed mitr (OPAC aerosol type 9) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SusoK
Computed suso (OPAC aerosol type 10) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array VolaK
Computed vola (OPAC aerosol type 11) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array VapoK
Computed vapo (OPAC aerosol type 12) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array AsduK
Computed asdu (OPAC aerosol type 13) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array BcarK
Computed bcar (CAMS aerosol type 1) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Dus1K
Computed dus1 (CAMS aerosol type 2) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Dus2K
Computed dus2 (CAMS aerosol type 3) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Dus3K
Computed dus3 (CAMS aerosol type 4) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array SulpK
Computed sulp (CAMS aerosol type 5) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Ssa1K
Computed ssa1 (CAMS aerosol type 6) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Ssa2K
Computed ssa2 (CAMS aerosol type 7) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array Ssa3K
Computed ssa3 (CAMS aerosol type 8) Jacobians, dimensions [nprofiles][nchannels][nlayers].

float array OmatK
Computed omat (CAMS aerosol type 9) Jacobians, dimensions [nprofiles][nchannels][nlayers].

59

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix C: C++ Profile class (used with RttovSafe objects)
Typically a vector of instances of this class is created, the profile data are assigned to each instance
and then the vector is associated with one or more RttovSafe instances.

Profile (const int nlevels, const int nsurfaces)
Constructor method.

void setGasUnits (const rttov::gasUnitType gasUnits)
Set the gas_units. See Appendix J for the gasUnitType enumeration constants.

void setMmrHydro (const bool mmrHydro)
Set the mmr_hydro flag.

void setMmrAer (const bool mmrAer)
Set the mmr_aer flag.

void setPHalf (const std::vector< double > &pHalf)
Set the pressure half-levels vector (size nlevels).

void setP (const std::vector< double > &p)
Set the pressure full-levels vector (size nlayers).

void setT (const std::vector< double > &t)
Set the temperatures vector (size nlayers).

void setQ (const std::vector< double > &q)
Set item q for the profile (size nlayers).

void setO3 (const std::vector< double > &o3)
Set item o3 for the profile (size nlayers).

void setCO2 (const std::vector< double > &co2)
Set item co2 for the profile (size nlayers).

void setN2O (const std::vector< double > &n2o)
Set item n2o for the profile (size nlayers).

void setCO (const std::vector< double > &co)
Set item co for the profile (size nlayers).

void setCH4 (const std::vector< double > &ch4)
Set item ch4 for the profile (size nlayers).

void setSO2 (const std::vector< double > &so2)
Set item so2 for the profile (size nlayers).

void setCLW (const std::vector< double > &clw)
Set item clw for the profile (size nlayers).

void setAngles (const double satzen, const double satazi, const double sunzen, const double sunazi)
Set satellite an solar angles.

void setSurfaceFraction (const std::vector<double>& surface_fraction)
Set surface coverage fraction for each surface except the last one. Vector size is nsurfaces-1, do not
specify if nsurfaces=1.

void setNearSurface (const isurf, const double t_2m, const double q_2m, const double u_10m, const double
v_10m, const double wind_fetch)

60

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Set near-surface parameters for surface index isurf (0<=isurf<=nsurfaces-1).

void setSkin (const isurf, const double t, const double salinity, const double snow_fraction, const double
foam_fraction, const double fastem_coef_1, const double fastem_coef_2, const double fastem_coef_3,
const double fastem_coef_4, const double fastem_coef_5)
Set skin parameters for surface index isurf (0<=isurf<=nsurfaces-1).

void setSurfType (const isurf, const int surftype, const int watertype)
Set surface type parameters for surface index isurf (0<=isurf<=nsurfaces-1).

void setSurfGeom (const double lat, const double lon, const double elevation)
Set surface geometry parameters.

void setDateTimes (const int yy, const int mm, const int dd, const int hh, const int mn, const int ss)
Set date and time.

void setSimpleCloud (const double ctp, const double cfraction)
Set simple cloud parameters.

void setZeeman (const double Be, const double cosbk)
Set zeeman parameters.

void setHydroFracEff (const double hydro_frac_eff)
Set item hydro_frac_eff for the profile.

void setHydroFracN (const std::vector< double > &hydro_frac, const int n)
Set profile hydro_frac for hydrometeor type n (1<=n<=30) for the profile (size nlayers).

void setHydroN (const std::vector< double > &hydro, const int n)
Set profile hydro for hydrometeor type n (1<=n<=30) for the profile (size nlayers).

void setHydroDeffN (const std::vector< double > &hydro_deff, const int n)
Set profile hydro_deff for hydrometeor type n (1<=n<=30) for the profile (size nlayers).

void setAerN (const std::vector< double > &aer, const int n)
Set profile aer of aerosol type n (1<=n<=30) for the profile (size nlayers).

void setAerClimProf(int index)
Generate climatological aerosol profiles based on OPAC types. The index argument is an integer (1-10)
indicating which of the 10 climatological types to generate. See the rttov_aer_clim_prof subroutine in
Annex I of the RTTOV user guide.

void setHydroFrac (const std::vector< double > &hydro_frac)
Set item hydro_frac for the profile (size nlayers).

void setStco (const std::vector< double > &stco)
Set item stco (UV/VIS/IR hydrometeor type 1) for the profile (size nlayers).

void setStma (const std::vector< double > &stma)
Set item stma (UV/VIS/IR hydrometeor type 2) for the profile (size nlayers).

void setCucc (const std::vector< double > &cucc)
Set item cucc (UV/VIS/IR hydrometeor type 3) for the profile (size nlayers).

void setCucp (const std::vector< double > &cucp)
Set item cucp (UV/VIS/IR hydrometeor type 4) for the profile (size nlayers).

void setCuma (const std::vector< double > &cuma)
Set item cuma (UV/VIS/IR hydrometeor type 5) for the profile (size nlayers).

void setClwd (const std::vector< double > &cirr)

61

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Set item clwd (cloud liquid water “Deff” type, UV/VIS/IR hydrometeor type 6) for the profile (size
nlayers).

void setBaum (const std::vector< double > &baum)
Set item Baum ice cloud (UV/VIS/IR hydrometeor type 7) for the profile (size nlayers).

void setBaran (const std::vector< double > &baran)
Set item Baran ice cloud (UV/VIS/IR hydrometeor type 8) for the profile (size nlayers).

void setClwDeff (const std::vector< double > &clwDeff)
Set item Deff for Clwd type (UV/VIS/IR hydrometeor type 6) for the profile (size nlayers).

void setBaumIceDeff (const std::vector< double > &baumIceDeff)
Set item Deff for Baum type (UV/VIS/IR hydrometeor type 7) for the profile (size nlayers).

void setClwdeParam (const int clwde_param)
Set item clwde_param for the profile.

void setIcedeParam (const int icede_param)
Set item icede_param for the profile.

void setMwRain (const std::vector< double > &rain)
Set item rain (MW hydrometeor type 1) for the profile (size nlayers).

void setMwSnow (const std::vector< double > &snow)
Set item snow (MW hydrometeor type 2) for the profile (size nlayers).

void setMwGraupel (const std::vector< double > &graupel)
Set item graupel (MW hydrometeor type 3) for the profile (size nlayers).

void setMwClw (const std::vector< double > &clw)
Set item cloud liquid water (MW hydrometeor type 4) for the profile (size nlayers).

void setMwCiw (const std::vector< double > &ciw)
Set item cloud ice water (MW hydrometeor type 5) for the profile (size nlayers).

void setInso (const std::vector< double > &inso)
Set item inso (OPAC aerosol type 1) for the profile (size nlayers).

void setWaso (const std::vector< double > &waso)
Set item waso (OPAC aerosol type 2) for the profile (size nlayers).

void setSoot (const std::vector< double > &soot)
Set item soot (OPAC aerosol type 3) for the profile (size nlayers).

void setSsam (const std::vector< double > &ssam)
Set item ssam (OPAC aerosol type 4) for the profile (size nlayers).

void setSscm (const std::vector< double > &sscm)
Set item sscm (OPAC aerosol type 5) for the profile (size nlayers).

void setMinm (const std::vector< double > &minm)
Set item minm (OPAC aerosol type 6) for the profile (size nlayers).

void setMiam (const std::vector< double > &miam)
Set item miam (OPAC aerosol type 7) for the profile (size nlayers).

void setMicm (const std::vector< double > &micm)
Set item micm (OPAC aerosol type 8) for the profile (size nlayers).

void setMitr (const std::vector< double > &mitr)
Set item mitr (OPAC aerosol type 9) for the profile (size nlayers).

62

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

void setSuso (const std::vector< double > &suso)
Set item suso (OPAC aerosol type 10) for the profile (size nlayers).

void setVola (const std::vector< double > &vola)
Set item vola (OPAC aerosol type 11) for the profile (size nlayers).

void setVapo (const std::vector< double > &vapo)
Set item vapo (OPAC aerosol type 12) for the profile (size nlayers).

void setAsdu (const std::vector< double > &asdu)
Set item asdu (OPAC aerosol type 13) for the profile (size nlayers).

void setBcar (const std::vector< double > &bcar)
Set item bcar (CAMS aerosol type 1) for the profile (size nlayers).

void setDus1 (const std::vector< double > &dus1)
Set item dus1 (CAMS aerosol type 2) for the profile (size nlayers).

void setDus2 (const std::vector< double > &dus2)
Set item dus2 (CAMS aerosol type 3) for the profile (size nlayers).

void setDus3 (const std::vector< double > &dus3)
Set item dus3 (CAMS aerosol type 4) for the profile (size nlayers).

void setSulp (const std::vector< double > &sulp)
Set item sulp (CAMS aerosol type 5) for the profile (size nlayers).

void setSsa1 (const std::vector< double > &ssa1)
Set item ssa1 (CAMS aerosol type 6) for the profile (size nlayers).

void setSsa2 (const std::vector< double > &ssa2)
Set item ssa2 (CAMS aerosol type 7) for the profile (size nlayers).

void setSsa3 (const std::vector< double > &ssa3)
Set item ssa3 (CAMS aerosol type 8) for the profile (size nlayers).

void setOmat (const std::vector< double > &omat)
Set item omat (CAMS aerosol type 9) for the profile (size nlayers).

63

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix D: C++ Profiles class (used with Rttov objects)
Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Profiles (const int nbprofiles, const int nblevels, const int nbsurfaces)
Constructor method for individual gas specification (recommended).

void setGasUnits (const int gasUnits)
Set the gas_units.

void setMmrHydro(const bool mmrhydro)
Set the mmr_hydro flag.

void setMmrAer (const bool mmraer)
Set the mmr_aer flag.

void setPHalf (double *pHalf)
Set the pointer to the p half-levels array of size [nprofiles][nlevels].

void setP (double *p)
Set the pointer to the p full-levels array of size [nprofiles][nlayers].

void setT (double *t)
Set the pointer to the temperature array of size [nprofiles][nlayers].

void setQ (double *q)
Set the pointer to the water vapour array of size [nprofiles][nlayers].

void setO3 (double *o3)
Set the pointer to the o3 array of size [nprofiles][nlayers].

void setCO2 (double *co2)
Set the pointer to the co2 array of size [nprofiles][nlayers].

void setN2O (double *n2o)
Set the pointer to the n2o array of size [nprofiles][nlayers].

void setCO (double *co)
Set the pointer to the co array of size [nprofiles][nlayers].

void setCH4 (double *ch4)
Set the pointer to the ch4 array of size [nprofiles][nlayers].

void setSO2 (double *so2)
Set the pointer to the so2 array of size [nprofiles][nlayers].

void setCLW (double *clw)
Set the pointer to the clw array of size [nprofiles][nlayers].

void setAngles (double *angles)
Set the pointer to the angles array of size [nprofiles][4] containing satzen, satazi, sunzen, sunazi for
each profile.

void setSurfaceFraction (double *surfaceFraction)
Set the pointer to the surfaceFraction array of size [nprofiles][nsurfaces-1] containing surface coverage
fraction for each surface except the last one for each profile. Do not specify if nsurfaces=1.

void setNearSurface (double *nearSurface)

64

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Set the pointer to the nearSurface array of size [nprofiles][nsurfaces][5] containing 2m t, 2m q, 10m
wind u, v, wind fetch for each surface for each profile.

void setSkin (double *skin)
Set the pointer to the skin array of size [nprofiles][nsurfaces][9] containing skin T, salinity,
snow_fraction, foam_fraction, fastem_coefs(1:5) for each surface for each profile.

void setSurfType (int *surftype)
Set the pointer to the surftype array of size [nprofiles][nsurfaces][2] containing surftype, watertype for
each surface for each profile.

void setSurfGeom (double *surfgeom)
Set the pointer to the surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for
each profile.

void setDateTimes (int *datetimes)
Set the pointer to the datetimes array of size [nprofiles][6] containing year, month, day, hour, minute,
second for each profile.

void setSimpleCloud (double *simplecloud)
Set the pointer to the simplecloud array of size [nprofiles][2] containing ctp, cfraction for each profile.

void setZeeman (double *zeeman)
Set the pointer to the zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

void setClwdeParam (int *clwdeParam)
Set the pointer to the clwdeParam array of size [nprofiles] containing clwde_param for each profile.

void setIcedeParm (int *icedeParam)
Set the pointer to the icedeParam array of size [nprofiles] containing icede_param for each profile.

void setHydroFracEff (double *hydroFracEff)
Set the pointer to the hydroFracEff array of size [nprofiles] containing hydro_frac_eff for each profile.

void setGasItem (double *gasItem, rttov::itemIdType item_id)
Set a gas, hydrometeor, or aerosol profile variable, gasItem size [nprofiles][nlayers]. See Appendix J for
the itemIdType enumeration constants.

setAerClimProf (int* indices)
Generate climatological aerosol profiles based on OPAC types. The indices argument is an array of size
[nprofiles] containing integers (1-10) indicating which of the 10 climatological types to generate for
each profile. See the rttov_aer_clim_prof subroutine in Annex I of the RTTOV user guide.

65

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix E: Python Profiles class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Methods:

Profiles (nprofiles, nlevels, nsurfaces)
Constructor method.

setAerClimProf (indices)
Generate climatological aerosol profiles based on OPAC types. The indices argument is an array of size
[nprofiles] containing integers (1-10) indicating which of the 10 climatological types to generate for
each profile. See the rttov_aer_clim_prof subroutine in Annex I of the RTTOV user guide.

setAerN (aer, n)
Set profile aer of size [nprofiles][nlayers] of aerosol type n (1<=n<=30). You can also access these
individually via the AerN (N=1,2,...,30) members described below.

delAerN (n)
Delete profile data for aerosol type n (1<=n<=30).

setHydroN (hydro, n)
Set profile hydro of size [nprofiles][nlayers] of hydrometeor type n (1<=n<=30). You can also access
these individually via the HydroN (N=1,2,...,30) members described below.

delHydroN (n)
Delete profile data for hydrometeor type n (1<=n<=30).

setHydroFracN (hydro_frac, n)
Set profile hydro_frac of size [nprofiles][nlayers] of hydro fraction for hydrometeor type n
(1<=n<=30). You can also access these individually via the HydroFracN (N=1,2,...,30) members
described below.

delHydroFracN (n)
Delete profile data for hydro fraction for hydrometeor type n (1<=n<=30).

setHydroDeffN (hydro_deff, n)
Set profile hydro_deff of size [nprofiles][nlayers] of hydro Deff for hydrometeor type n (1<=n<=30).
You can also access these individually via the HydroDeffN (N=1,2,...,30) members described below.

delHydroDeffN (n)
Delete profile data for hydro Deff for hydrometeor type n (1<=n<=30).

Members:
int GasUnits

The gas_units (see Appendix J for the gasUnitType class).

int MmrHydro
The mmr_hydro flag.

int MmrAer
The mmr_aer flag.

float array PHalf

66

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

The pressure half-levels array of size [nprofiles][nlevels].

float array P
The pressure full-levels array of size [nprofiles][nlayers].

float array T
The temperature array of size [nprofiles][nlayers].

float array Q
The water vapour array of size [nprofiles][nlayers].

float array O3
The o3 array of size [nprofiles][nlayers].

float array CO2
The co2 array of size [nprofiles][nlayers].

float array CO
The co array of size [nprofiles][nlayers].

float array N2O
The n2o array of size [nprofiles][nlayers].

float array CH4
The ch4 array of size [nprofiles][nlayers].

float array SO2
The so2 array of size [nprofiles][nlayers].

float array CLW
The clw array of size [nprofiles][nlayers].

float array Angles
The angles array of size [nprofiles][4] containing satzen, satazi, sunzen, sunazi for each profile.

float array SurfaceFraction
The surface_fraction array of size [nprofiles][nsurfaces-1] containing the surface coverage fraction for
each surface except the last one for each profile. Do not specify if nsurfaces=1.

float array NearSurface
The near_surface array of size [nprofiles][nsurfaces][5] containing 2m t, 2m q, 10m wind u, v, wind
fetch for each surface for each profile.

float array Skin
The skin array of size [nprofiles][nsurfaces][9] containing skin T, salinity, snow_fraction,
foam_fraction, fastem_coefs(1:5) for each surface for each profile.

int array SurfType
The surftype array of size [nprofiles][nsurfaces][2] containing surftype, watertype for each surface for
each profile.

float array SurfGeom
The surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for each profile.

int array DateTimes
The datetimes array of size [nprofiles][6] containing year, month, day, hour, minute, second for each
profile.

67

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float array SimpleCloud
The simplecloud array of size [nprofiles][2] containing ctp, cfraction for each profile.

float array Zeeman
The zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

float array HydroFracEff
The hydro_frac_eff for each profile, of size [nprofiles].

float array HydroFracN where N=1, 2, …, 30
The hydromteor type N hydro fraction array of size [nprofiles][nlayers].

float array HydroN where N=1, 2, …, 30
The hydrometeor type N array of size [nprofiles][nlayers].

float array HydroDeffN where N=1, 2, …, 30
The hydromteor type N effective diameter array of size [nprofiles][nlayers].

float array AerN where N=1, 2, …, 30
The aerosol type N array of size [nprofiles][nlayers].

float array HydroFrac
The hydro_frac array of size [nprofiles][nlayers].

float array Stco
The OPAC stco cloud liquid type (UV/VIS/IR hydrometeor type 1) array of size [nprofiles][nlayers].

float array Stma
The OPAC stma cloud liquid type (UV/VIS/IR hydrometeor type 2) array of size [nprofiles][nlayers].

float array Cucc
The OPAC cucc cloud liquid type (UV/VIS/IR hydrometeor type 3) array of size [nprofiles][nlayers].

float array Cucp
The OPAC cucp cloud liquid type (UV/VIS/IR hydrometeor type 4) array of size [nprofiles][nlayers].

float array Cuma
The OPAC cuma cloud liquid type (UV/VIS/IR hydrometeor type 5) array of size [nprofiles][nlayers].

float array Clwd
The “cloud liquid Deff” type (UV/VIS/IR hydrometeor type 6) array of size [nprofiles][nlayers].

float array Baum
The Baum cloud ice type (UV/VIS/IR hydrometeor type 7) array of size [nprofiles][nlayers].

float array Baran
The Baran cloud ice type (UV/VIS/IR hydrometeor type 8) array of size [nprofiles][nlayers].

float array ClwDeff
The Deff for Clwd type (Deff for UV/VIS/IR hydrometeor type 6) array of size [nprofiles][nlayers].

float array BaumIceDeff
The Deff for Baum type (Deff UV/VIS/IR hydrometeor type 7) array of size [nprofiles][nlayers].

int array ClwdeParam
The clwde_param for each profile, of size [nprofiles].

int array IcedeParam
The icede_param for each profile, of size [nprofiles]

68

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float array MWRain
The rain (MW hydrometeor type 1) array of size [nprofiles][nlayers].

float array MWSnow
The snow (MW hydrometeor type 2) array of size [nprofiles][nlayers].

float array MWGraupel
The graupel (MW hydrometeor type 3) array of size [nprofiles][nlayers].

float array MWClw
The cloud liquid water (MW hydrometeor type 4) array of size [nprofiles][nlayers].

float array MWCiw
The cloud ice water (MW hydrometeor type 5) array of size [nprofiles][nlayers].

float array Inso
The inso (OPAC aerosol type 1) array of size [nprofiles][nlayers].

float array Waso
The waso (OPAC aerosol type 2) array of size [nprofiles][nlayers].

float array Soot
The soot (OPAC aerosol type 3) array of size [nprofiles][nlayers].

float array Ssam
The ssam (OPAC aerosol type 4) array of size [nprofiles][nlayers].

float array Sscm
The sscm (OPAC aerosol type 5) array of size [nprofiles][nlayers].

float array Minm
The minm (OPAC aerosol type 6) array of size [nprofiles][nlayers].

float array Miam
The miam (OPAC aerosol type 7) array of size [nprofiles][nlayers].

float array Micm
The micm (OPAC aerosol type 8) array of size [nprofiles][nlayers].

float array Mitr
The mitr (OPAC aerosol type 9) array of size [nprofiles][nlayers].

float array Suso
The suso (OPAC aerosol type 10) array of size [nprofiles][nlayers].

float array Vola
The vola (OPAC aerosol type 11) array of size [nprofiles][nlayers].

float array Vapo
The vapo (OPAC aerosol type 12) array of size [nprofiles][nlayers].

float array Asdu
The asdu (OPAC aerosol type 13) array of size [nprofiles][nlayers].

float array Bcar
The bcar (CAMS aerosol type 1) array of size [nprofiles][nlayers].

float array Dus1
The dus1 (CAMS aerosol type 2) array of size [nprofiles][nlayers].

69

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

float array Dus2
The dus2 (CAMS aerosol type 3) array of size [nprofiles][nlayers].

float array Dus3
The dus3 (CAMS aerosol type 4) array of size [nprofiles][nlayers].

float array Sulp
The sulp (CAMS aerosol type 5) array of size [nprofiles][nlayers].

float array Ssa1
The ssa1 (CAMS aerosol type 6) array of size [nprofiles][nlayers].

float array Ssa2
The ssa2 (CAMS aerosol type 7) array of size [nprofiles][nlayers].

float array Ssa3
The ssa3 (CAMS aerosol type 8) array of size [nprofiles][nlayers].

float array Omat
The omat (CAMS aerosol type 9) array of size [nprofiles][nlayers].

70

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix F: C++ Options class
The methods listed below are used to set the RTTOV and wrapper options. Methods also exist to
query the options: see wrapper/RttovOptions.h. The Rttov and RttovSafe objects have options
members so there is usually no need to create instances of this class manually.

Options ()
Constructor method.

void setNthreads (int nthreads)
Set the number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

int getNthreads () const
Return the number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

void setNprofsPerCall (int nprofsPerCall)
Set the number of profiles passed into the RTTOV direct or K models per call.

int getNprofsPerCall () const
Return the number of profiles passed into the RTTOV direct or K models per call.

void setVerboseWrapper (bool verboseWrapper)
Set the verbose_wrapper option (verbose output from wrapper).

bool isVerboseWrapper () const
Return set the verbose_wrapper option.

void setCheckOpts (bool checkOpts)
Set the check_opts option (call rttov_user_check_opts after loading an instrument or when updating
options).

bool isCheckOpts () const
Return set the check_opts option.

void setStoreEmisRefl (bool storeEmisRefl)
Set the store_emis_refl wrapper option (output of surface emissivity/reflectance data).

bool isStoreEmisRefl () const
Return the store_emis_refl wrapper option.

void setStoreTrans (bool storeTrans)
Set the store_trans wrapper option (output of transmittance data).

bool isStoreTrans () const
Return the store_trans wrapper option.

void setStoreRad (bool storeRad)
Set the store_rad wrapper option (output of primary radiance data).

bool isStoreRad () const
Return the store_rad wrapper option.

void setStoreRad2 (bool storeRad2)
Set the store_rad2 wrapper option (output of secondary radiance data).

bool isStoreRad2 () const
Return the store_rad2 wrapper option.

71

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

void setStoreDiagOutput (bool diagOutput)
Set the store_diag_output wrapper option (output of diagnostic output data).

bool isStoreDiagOutput () const
Return the store_diag_output wrapper option.

void setStoreEmisTerms (bool storeEmisTerms)
Set the store_emis_terms wrapper option (output of emissivity retrieval terms data).

bool isStoreEmisTerms () const
Return the store_emis_terms wrapper option.

void setRadarKAzef (bool radarKAzef)
Set the radar_k_azef wrapper option (radar K inputs in Azef or Zef).

bool isRadarKAzef () const
Return the radar_k_azef wrapper option.

void setVerbose (bool verbose)
Set the opts%config%verbose option.

bool isVerbose ()
Return the opts%config%verbose option.

void setApplyRegLimits (bool applyRegLimts)
Set the opts%config%apply_reg_limits option.

bool isApplyRegLimits ()
Return the opts%config%apply_reg_limits option.

void setCheckProfiles (bool checkProfiles)
Set the opts%config%check_profiles option.

bool isCheckProfiles ()
Return the opts%config%check_profiles option.

void setTransmittancesOnly (bool transmittancesOnly)
Set the opts%config%transmittances_only option.

bool isTransmittancesOnly ()
Return the opts%config%transmittances_only option.

void setBtOvercastCalc (bool btOvercastCalc)
Set the opts%config%bt_overcast_calc option.

bool isBtOvercastCalc ()
Return the opts%config%bt_overcast_calc option.

void setGasOpdepCalc (bool gasOpdepCalc)
Set the opts%config%gas_opdep_calc option.

bool isGasOpdepCalc ()
Return the opts%config%gas_opdep_calc option.

void setADKBT (bool adkBt)
Set the opts%config%adk_bt option.

bool isADKBT ()
Return the opts%config%adk_bt option.

72

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

void setADKRefl (bool adkRefl)
Set the opts%config%adk_refl option.

bool isADKRefl ()
Return the opts%config%adk_refl option.

void setOpdep13GasClip (bool opdep13GasClip)
Set the opts%config%opdep13_gas_clip option.

bool isOpdep13GasClip ()
Return the opts%config%opdep13_gas_clip option.

void setEnableInterp (bool enableInterp)
Set the opts%interpolation%enable_interp option.

bool isEnableInterp ()
Return the opts%interpolation%enable_interp option.

void setInterpMode (int interpMode)
Set the opts%interpolation%interp_mode option.

int getInterpMode () const
Return the opts%interpolation%interp_mode option.

void setPressureGradients (bool pressureGradients)
Set the opts%interpolation%pressure_gradients option.

bool isPressureGradients ()
Return the opts%interpolation%pressure_gradients option.

void setO3Data (bool o3Data)
Set the opts%rt_all%o3_data option.

bool isO3Data ()
Return the opts%rt_all%o3_data option.

void setCO2Data (bool co2Data)
Set the opts%rt_all%co2_data option.

bool isCO2Data ()
Return the opts%rt_all%co2_data option.

void setN2OData (bool n2oData)
Set the opts%rt_all%n2o_data option.

bool isN2OData ()
Return the opts%rt_all%n2o_data option.

void setCOData (bool coData)
Set the opts%rt_all%co_data option.

bool isCOData ()
Return the opts%rt_all%co_data option.

void setCH4Data (bool ch4Data)
Set the opts%rt_all%ch4_data option.

bool isCH4Data ()
Return the opts%rt_all%ch4_data option.

73

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

void setSO2Data (bool so2Data)
Set the opts%rt_all%so2_data option.

bool isSO2Data ()
Return the opts%rt_all%so2_data option.

void setSolar (bool solar)
Set the opts%rt_all%solar option.

bool isSolar ()
Return the opts%rt_all%solar option.

void setRayleighMaxWavelength (double rayleighMaxWavelength)
Set the opts%rt_all%rayleigh_max_wavelength option.

double getRayleighMaxWavelength () const
Return the opts%rt_all%rayleigh_max_wavelength option.

void setRayleighMinPressure (double rayleighMinPressuer)
Set the opts%rt_all%rayleigh_min_pressure option.

double getRayleighMinPressure () const
Return the opts%rt_all%rayleigh_min_pressure option.

void setRayleighSingleScatt (bool rayleighSingleScatt)
Set the opts%rt_all%rayleigh_single_scatt option.

bool isRayleighSingleScatt ()
Return the opts%rt_all%rayleigh_single_scatt option.

void setNlteCorrection (bool nlteCorrection)
Set the opts%rt_all%nlte_correction option.

bool isNlteCorrection ()
Return the opts%rt_all%nlte_correction option.

void setRefraction (bool refraction)
Set the opts%rt_all%refraction option.

bool isRefraction ()
Return the opts%rt_all%refraction option.

void setPlaneParallel (bool planeParallel)
Set the opts%rt_all%plane_parallel option.

bool isPlaneParallel ()
Return the opts%rt_all%plane_parallel option.

void setRadDownLinTau (bool radDownLinTau)
Set the opts%rt_all%rad_down_lin_tau option.

bool isRadDownLinTau ()
Return the opts%rt_all%rad_down_lin_tau option.

void setUseT2m (bool useT2m)
Set the opts%rt_all%use_t2m option.

bool isUseT2m ()
Return the opts%rt_all%use_t2m option.

void setUseQ2m (bool useQ2m)
Set the opts%rt_all%use_q2m option.

74

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

bool isUseQ2m ()
Return the opts%rt_all%use_q2m option.

void setSolarSeaReflModel (int solarSeaReflModel)
Set the opts%surface%solar_sea_refl_model option.

int getSolarSeaReflModel () const
Return the opts%surface%solar_sea_refl_model option.

void setIrSeaEmisModel (int irSeaEmisModel)
Set the opts%surface%ir_sea_emis_model option.

int getIrSeaEmisModel () const
Return the opts%surface%ir_sea_emis_model option.

void setMwSeaEmisModel (int mwSeaEmisModel)
Set the opts%surface%mw_sea_emis_model option.

int getMwSeaEmisModel () const
Return the opts%surface%mw_sea_emis_model option.

void setUseFoamFraction (bool useFoamFraction)
Set the opts%surface%use_foam_fraction option.

bool isUseFoamFraction ()
Return the opts%surface%use_foam_fraction option.

void setLambertian (bool lambertian)
Set the opts%surface%lambertian option.

bool isLambertian ()
Return the opts%surface%lambertian option.

void setLambertianFixedAngle (bool lambertianFixedAngle)
Set the opts%surface%lambertian_fixed_angle option.

bool isLambertianFixedAngle ()
Return the opts%surface%lambertian_fixed_angle option.

void setUseTskinEff (bool useTskinEff)
Set the opts%surface%use_tskin_eff option.

bool isUseTskinEff ()
Return the opts%surface%use_tskin_eff option.

void setCLWData (bool clwData)
Set the opts%clw_absorption%clw_data option.

bool isCLWData ()
Return the opts%clw_absorption%clw_data option.

void setPermittivityParam (int permittivityParam)
Set the opts%clw_absorption%permittivity_param option.

int getPermittivityParam () const
Return the opts%clw_absorption%permittivity_param option.

void setCLWCloudTop (double clwCloudTop)
Set the opts%clw_absorption%clw_cloud_top option.

75

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

double getCLWCloudTop () const
Return the opts%clw_absorption%clw_cloud_top option.

void setHydrometeors (bool hydrometeors)
Set the opts%scatt%hydrometeors option.

bool isHydrometeors ()
Return the opts%scatt%hydrometeors option.

void setAerosols (bool aerosols)
Set the opts%scatt%aerosols option.

bool isAerosols ()
Return the opts%scatt%aerosols option.

void setThermalSolver (int thermalSolver)
Set the opts%scatt%thermal_solver option.

int getThermalSolver () const
Return the opts%scatt% thermal_solver option.

void setSolarSolver (int solarSolver)
Set the opts%scatt%solar_solver option.

int getSolarSolver () const
Return the opts%scatt%solar_solver option.

void setRadar (bool radar)
Set the opts%scatt%radar option.

bool isRadar ()
Return the opts%scatt%radar option.

void setUserHydroOptParam (bool userHydroOptParam)
Set the opts%scatt%user_hydro_opt_param option.

bool isUserHydroOptParam ()
Return the opts%scatt%user_hydro_opt_param option.

void setUserAerOptParam (bool userAerOptParam)
Set the opts%scatt%user_aer_opt_param option.

bool isUserAerOptParam ()
Return the opts%scatt%user_aer_opt_param option.

void setBaranIceVersion(int baranIceVersion)
Set the opts%scatt%baran_ice_version option.

int getBaranIceVersion () const
Return the opts%scatt%baran_ice_version option.

void setRayleighMultiScatt (bool rayleighMultiScatt)
Set the opts%scatt%rayleigh_multi_scatt option.

bool isRayleighMultiScatt ()
Return the opts%scatt%rayleigh_multi_scatt option.

void setDomNstreams (int domNstreams)
Set the opts%scatt%dom_nstreams option.

int getDomNstreams () const

76

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Return the opts%scatt%dom_nstreams option.

void setDomAccuracy (double domAccuracy)
Set the opts%scatt%dom_accuracy option.

double getDomAccuracy () const
Return the opts%scatt%dom_accuracy option.

void setDomOpdepThreshold (double domOpdepThreshold)
Set the opts%scatt%dom_opdep_threshold option.

double getDomOpdepThreshold () const
Return the opts%scatt%dom_opdep_threshold option.

void setChouTangMod (bool chouTangMod)
Set the opts%scatt%chou_tang_mod option.

bool isChouTangMod ()
Return the opts%scatt%chou_tang_mod option.

void setChouTangFactor (double chouTangFactor)
Set the opts%scatt%chou_tang_factor option.

double getChouTangFactor () const
Return the opts%scatt%chou_tang_factor option.

void setMwPolMode (bool mwPolMode)
Set the opts%scatt%Mw_pol_mode option.

int isMwPolMode () const
Return the opts%scatt%mw_pol_mode option.

void setIcePolarisation (double icePolarisation)
Set the opts%scatt%ice_polarisation option.

double getIcePolarisation () const
Return the opts%scatt%ice_polarisation option.

void setZeroHydroTLAD (bool zeroHydroTLAD)
Set the opts%scatt%zero_hydro_tlad option.

bool isZeroHydroTLAD ()
Return the opts%scatt%zero_hydro_tlad option.

void setOverlapParam (int overlapParam)
Set the opts%cloud_overlap%overlap_param option.

bool getOverlapParam ()
Return the opts%cloud_overlap%overlap_param option.

void setPerHydroFrac (bool perHydroFrac)
Set the opts%cloud_overlap%per_hydro_frac option.

bool isPerHydroFrac ()
Return the opts%cloud_overlap%per_hydro_frac option.

void setColThreshold (double colThreshold)
Set the opts%cloud_overlap%col_threshold option.

double getColThreshold () const
Return the opts%cloud_overlap%col_threshold option.

77

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

void setTwoColMaxFracMaxP (double twoColMaxFracMaxP)
Set the opts%cloud_overlap%two_col_max_frac_max_p option.

double getTwoColMaxFracMaxP () const
Return the opts%cloud_overlap%two_col_max_frac_max_p option.

void setHydroFracTLAD (bool hydroFracTLAD)
Set the opts%cloud_overlap%hydro_frac_tlad option.

bool isHydroFracTLAD ()
Return the opts%cloud_overlap%hydro_frac_tlad option.

78

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix G: Python Options class
The members below correspond directly to the RTTOV and wrapper options and are referenced
directly. The Rttov class has an Options member so there is usually no need to create instances of
this class manually.

Methods:

Options ()
Constructor method.

Members:
int Nthreads

The number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

int NprofsPerCall
The number of profiles passed into the RTTOV direct or K models per call.

bool VerboseWrapper
The verbose_wrapper option (verbose output from wrapper).

bool CheckOpts
The check_opts option (call rttov_user_check_opts after loading an instrument or when updating
options).

bool StoreEmisRefl
The store_emis_refl wrapper option (output of surface emissivity/reflectance data).

bool StoreTrans
The store_trans wrapper option (output of transmittance data).

bool StoreRad
The store_rad wrapper option (output of primary radiance data)..

bool StoreRad2
The store_rad2 wrapper option (output of secondary radiance data).

bool StoreDiagOutput
The store_diag_output wrapper option (output of diagnostic output data).

bool StoreEmisTerms
The store_emis_terms wrapper option (output of emissivity retrieval terms data).

bool RadarKAzef
The radar_k_azef wrapper option (radar K inputs in Azef or Zef).

bool Verbose
The opts%config%verbose option.

bool ApplyRegLimits
The opts%config%apply_reg_limits option.

bool CheckProfiles
The opts%config%check_profiles option.

bool TransmittancesOnly

79

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

The opts%config%transmittances_only option.

bool BtOvercastCalc ()
The opts%config%bt_overcast_calc option.

bool GasOpdepCalc ()
The opts%config%gas_opdep_calc option.

bool ADKBT
The opts%config%adk_bt option.

bool ADKRefl
The opts%config%adk_refl option.

bool Opdep13GasClip
The opts%config%opdep13_gas_clip option.

bool EnableInterp
The opts%interpolation%enable_interp option.

int InterpMode
The opts%interpolation%interp_mode option.

bool PressureGradients
The opts%interpolation%pressure_gradients option.

bool O3Data
The opts%rt_all%o3_data option.

bool CO2Data
The opts%rt_all%co2_data option.

bool N2OData
The opts%rt_all%n2o_data option.

bool COData
The opts%rt_all%co_data option.

bool CH4Data
The opts%rt_all%ch4_data option.

bool SO2Data
The opts%rt_all%so2_data option.

bool Solar
The opts%rt_all%solar option.

float RayleighMaxWavelength
The opts%rt_all%rayleigh_max_wavelength option.

float RayleighMinPressure
The opts%rt_all%rayleigh_min_pressure option.

bool RayleighSingleScatt
The opts%rt_all%rayleigh_single_scatt option.

bool NlteCorrection
The opts%rt_all%nlte_correction option.

bool Refraction

80

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

The opts%rt_all%refraction option.

bool PlaneParallel
The opts%rt_all%plane_parallel option.

bool RadDownLinTau
The opts%rt_all%rad_down_lin_tau option.

bool UseT2m
The opts%rt_all%use_t2m option.

bool UseQ2m
The opts%rt_all%use_q2m option.

int SolarSeaReflModel
The opts%surface%solar_sea_refl_model option.

int IrSeaEmisModel
The opts%surface%ir_sea_emis_model option.

int MwSeaEmisModel
The opts%surface%mw_sea_emis_model option.

bool UseFoamFraction
The opts%surface%use_foam_fraction option.

bool Lambertian
The opts%surface%lambertian option.

bool LambertianFixedAngle
The opts%surface%lambertian_fixed_angle option.

bool UseTskinEff
The opts%surface%use_tskin_eff option.

bool CLWData
The opts%clw_absorption%clw_data option.

int PermittivityParam
The opts%clw_absorption%permittivity_param option.

float CLWCloudTop
The opts%clw_absorption%clw_cloud_top option.

bool Hydrometeors
The opts%scatt%hydrometeors option.

bool Aerosols
The opts%scatt%aerosols option.

int ThermalSolver
The opts%scatt%thermal_solver option.

int SolarSolver
The opts%scatt%solar_solver option.

bool Radar
The opts%scatt%radar option.

81

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

bool UserHydroOptParam
The opts%scatt%user_hydro_opt_param option.

bool UserAerOptParam
The opts%scatt%user_aer_opt_param option.

int BaranIceVersion
The opts%scatt%baran_ice_version option.

bool RayleighMultiScatt
The opts%scatt%rayleigh_multi_scatt option.

int DomNstreams
The opts%scatt%dom_nstreams option.

float DomAccuracy
The opts%scatt%dom_accuracy option.

float DomOpdepThreshold
The opts%scatt%dom_opdep_threshold option.

bool ChouTangMod
The opts%scatt%chou_tang_mod option.

float ChouTangFactor
The opts%scatt%chou_tang_factor option.

int MwPolMode ()
The opts%scatt%mw_pol_mode option.

float IcePolarisation
The opts%scatt%ice_polarisation option.

bool ZeroHydroTLAD
The opts%scatt%zero_hydro_tlad option.

bool OverlapParam
The opts%cloud_overlap%overlap_param option.

bool PerHydroFrac
The opts%cloud_overlap%per_hydro_frac option.

float ColThreshold
The opts%cloud_overlap%col_threshold option.

float TwoColMaxFracMaxP
The opts%cloud_overlap%two_col_max_frac_max_p option.

bool HydroFracTLAD
The opts%cloud_overlap%hydro_frac_tlad option.

82

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix H: C++ Atlas class
Atlas ()

Atlas class constructor method.

Atlas (const bool verbose)
Atlas class constructor method.

const string & getAtlasPath () const
Return the path for the atlas files.

void setAtlasPath (const string &atlasPath)
Set the path for the atlas files.

bool isAtlasLoaded () const
Return true if atlas has been loaded.

void setVerbose (const bool verbose)
Set the verbose boolean.

void setIncLand (const bool incLand)
Set the inc_land boolean.

bool getIncLand () const
Return the inc_land boolean.

void setIncSeaIce (const bool incSeaIce)
Set the inc_seaice boolean.

bool getIncSeaIce () const
Return the inc_seaice boolean.

void setIncSea (const bool incSea)
Set the inc_sea boolean.

bool getIncSea () const
Return the inc_sea boolean.

void setMaxDistance (const double maxDistance)
Set the max_distance double.

double getMaxDistance () const
Return the max_distance double.

bool loadBrdfAtlas (const int month, const int atlas_id=-1)
Initialise the BRDF atlas for use with any instrument.

bool loadBrdfAtlas (const int month, rttov::Rttov* rttov, const int atlas_id=-1)
Initialise the BRDF atlas for a specific instrument (rttov may be an Rttov or RttovSafe object).

bool loadIrEmisAtlas (const int month, const int camel_version=3, const int year=2007, const bool
ang_corr=false, const int atlas_id=-1)
Initialise the IR emissivity atlas for use with any instrument.

bool loadIrEmisAtlas (const int month, rttov::Rttov* rttov, const int camel_version=3, const int
year=2007, const bool ang_corr=false, const int atlas_id=-1)
Initialise the IR emissivity atlas for a specific instrument (rttov may be an Rttov or RttovSafe object).

bool loadMwEmisAtlas (const int month, const int atlas_id=-1)

83

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Initialise the MW emissivity atlas for use with any instrument (TELSEM2)

bool loadMwEmisAtlas (const int month, rttov::Rttov* rttov, int const year=0, const int atlas_id=-1)
Initialise the MW emissivity atlas for a specific instrument (CNRM MW atlas) (rttov may be an Rttov or
RttovSafe object).

void fillEmisBrdf (double* emisBrdf, rttov::Rttov* rttov, const vector<int> &channels=vector<int>{})
Return emissivities/BRDFs (rttov may be an Rttov or RttovSafe object). emisBrdf is of dimensions
[nprofiles][nsurfaces][nchannels].

void dropAtlas ()
Deallocate memory for the atlas.

84

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix I: Python Atlas class
Methods:

Atlas (verbose=True)
Constructor method.

bool isAtlasLoaded()
Returns True if the atlas is loaded.

bool loadBrdfAtlas(month, inst=None, atlas_id=-1)
Load BRDF atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov instance to initialise the BRDF atlas for a specific instrument (for faster
calls).

bool loadIrEmisAtlas(month, inst=None, camel_version=3, year=2007, ang_corr=False, atlas_id=-1)
Load IR emissivity atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov instance to initialise the BRDF atlas for a specific instrument (for faster
calls).

bool loadMwEmisAtlas(month, inst=None, year=0, atlas_id=-1)
Load MW emissivity atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov instance: this is required for the CNRM atlas, but is ignored by
TELSEM2.

float array getEmisBrdf(inst, channels=None)
Return array of emissivity/BRDF values of dimensions [nprofiles][nsurfaces][nchannels]. The inst
argument is a loaded Rttov instance which has profile data associated with it. Values are returned for the
supplied channel list or otherwise for all loaded channels for the instrument. Throws an exception if an
error is encountered.

dropAtlas ()
Deallocate atlas data.

Members:
string AtlasPath

Path to the atlas data to be loaded: must be set before calling one of the “load” methods.

bool IncLand
If True emissivity/BRDF values are returned for profiles with land surface type; otherwise negative
values are returned for such profiles. Default: True.

bool IncSea
If True emissivity/BRDF values are returned for profiles with sea surface type; otherwise negative values
are returned for such profiles. Default: True.

bool IncSeaIce
If True emissivity/BRDF values are returned for profiles with sea-ice surface type; otherwise negative
values are returned for such profiles. Default: True.

double MaxDistance
If MaxDistance is positive and the IR emissivity atlas or BRDF atlas has no data at the given lat/lon
location, then a nearby emissivity/BRDF value is returned if one is found within the specified distance

85

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

(in km). Default: 0 km (i.e., do not search for nearby values).

bool Verbose
Verbosity flag.

86

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix J: Enumeration types (C++) and constants (Python)
Gas units

The following table lists the constants of the enumeration rttov::gasUnitType used to specify the
profile gas_units variable in the setGasUnits method of the Profile class in C++. This is defined in
wrapper/Rttov_common.h.

Enumeration constants Description

unknown Default initialisation, kg/kg over moist air will be used

ppmv_dry Gas units of ppmv over dry air

kg_per_kg Gas units of kg/kg over moist air

ppmv_wet Gas units of ppmv over moist air

In Python the gasUnitType class can be imported from pyrttov (defined in wrapper/pyrttov/
rttype.py) and can be used to specify the gas units. This is used in code as, for example,

from pyrttov.rttype import gasUnitType
profiles.GasUnits = gasUnitType('ppmv_wet')

where the string argument is one of 'unknown', 'ppmv_dry', 'kg_per_kg', or 'ppmv_wet' as in the
table above for the C++ enumeration constants..

ItemIDs (for gas, hydrometeor, and aerosol profiles)

The following table lists the constants of the C++ enumeration rttov::itemIdType used for setting
gas, hydrometeor, and aerosol profiles in the setGasItem method of the Profiles class and to obtain
the Jacobians for gases, hydrometeor, and aerosol profiles using the getItemK method of the Rttov
and RttovSafe classes after running the RTTOV K model. These constants are defined in wrapper/
Rttov_common.h.

Enumeration constants Description

Q, O3, CO2, N2O, CO, CH4, SO2 RTTOV variable gases

CLW Cloud liquid water (for non-scattering MW simulations)

AER1, AER2, ..., AER30 Aerosol particle types 1-30.

INSO, WASO, SOOT, SSAM, SSCM,
MINM, MIAM, MICM, MITR, SUSO,
VOLA, VAPO, ASDU

The 13 OPAC aerosol particle types.

BCAR, DUS1, DUS2, DUS3, SULP,
SSA1, SSA2, SSA3, OMAT

The 9 CAMS aerosol particle types.

HYDRO_FRAC Hydro fraction for common case with single hydro fraction per layer

HYDRO_FRAC1, HYDRO_FRAC2, ...,
HYDRO_FRAC30

Hydro fractions for hydrometeor types 1-30 (for per-hydrometeor fractions)

HYDRO1, HYDRO2, ..., HYDRO30 Hydrometeor types 1-30

87

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

STCO, STMA, CUCC, CUCP, CUMA,
CLWD, BAUM, BARAN

The hydrometeor types in UV/VIS/IR hydrotable files

MW_RAIN, MW_SNOW,
MW_GRAUPEL, MW_CLW,
MW_CIW,

The hydrometeor types in MW hydrotable files

HYDRO_DEFF1, HYDRO_DEFF2, ...,
HYDRO_DEFF30

Hydrometeor Deff for hydrometeor types 1-30

CLW_DEFF Hydrometeor Deff for the CLWD hydrometeor type

BAUM_ICE_DEFF Hydrometeor Deff for the BAUM hydrometeor type

In Python, the itemIdType class can be imported from pyrttov (defined in wrapper/pyrttov/
rttype.py) and can be used wherever gas/hydrometeor/aerosol item IDs are required, such as with
the getItemK method of the Rttov class. These are used in code as, for example,

from pyrttov.rttype import itemIdType
itemIdType('Q')

where the string argument can be any of the strings 'Q', 'T', etc listed in the table above for the C++
enumeration constants.

Options

The following table lists C++ enumerations for integer option values which can be compared with
the corresponding table in Annex K of the user guide. These are defined in
wrapper/RttovOptions.h.

Option Enumeration constants Description

InterpMode

interp_rochon (1) Original RTTOV interpolation method, Jacobians may
show oscillations.

interp_loglinear (2)
May be beneficial in execution time for direct-model
calculations, but not suitable for TL/AD/K.

interp_rochon_loglinear (3) Similar to mode 1, but with somewhat reduced oscillations.

interp_rochon_wfn (4)
Default, no oscillations, smaller interpolation errors in
general compared to modes 1-3, but most computationally
expensive method.

interp_rochon_loglinear_wfn (5)

No oscillations, but Jacobians may show small “artefacts”
due to interpolation, smallest interpolation errors in
general, slightly faster than mode 4. Recommended as an
alternative to mode 4.

SolarSeaReflModel solar_refl_model_elfouhaily (1)
Elfouhaily et al. (2017) wave spectrum parameterisation
for solar sea surface BRDF model

IrSeaEmisModel
ir_emis_model_isem (1) ISEM IR sea surface emissivity model

ir_emis_model_iremis (2) IREMIS IR sea surface emissivity model

MwSeaEmisModel mw_emis_model_fastem5 (1) FASTEM-5 MW sea surface emissivity model

88

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

mw_emis_model_fastem6 (2) FASTEM-6 MW sea surface emissivity model

mw_emis_model_surface_ocean (3) SURFEM-Ocean MW sea surface emissivity model

PermittivityParam
(for CLW
absorption)

clw_perm_liebe (1) Liebe (1989) permittivity parameterisation

clw_perm_rosenkranz (2) Rosenkranz (2015) permittivity parameterisation

clw_perm_tkc (3)
Turner, Kneifel, Cadeddu (2016) permittivity
parameterisation

ThermalSolver

thermal_solver_dom (1) DOM thermal solver

thermal_solver_chou (2) Chou-scaling solver

thermal_solver_delta_edd (3) Delta-Eddington solver

SolarSolver
solar_solver_dom (1) DOM solar solver

solar_solver_mfasis_nn (2) MFASIS neural-network solver

BaranIceVersion
baran2014 (1) Baran 2014 ice cloud scheme

baran2018 (2) Baran 2018 ice cloud scheme

MwPolMode

mw_pol_mode_no_pol (0) Disable polarised scattering

mw_pol_mode_empirical (1)
Empirical scaling of extinction for V and H polarised
channels, scale factor controlled by IcePolarisation option

mw_pol_mode_aro_scaled (2)
ARO scaled polarisation for V, H, QV, QH polarised
channels

OverlapParam

cloud_overlap_auto_select (0)
Automatic selection of overlap_param at run-time: for
VIS/IR sensors use max/random and for MW sensors use
two-column hydro-weighted scheme.

cloud_overlap_max_random (1)
Maximum-random overlap, recommended for VIS/IR
sensors

cloud_overlap_2col_max (2)
Two column, effective frac is maximum value among
layers at pressures below TwoColMaxFracMaxP option

cloud_overlap_2col_weighted (3)
Two column, effective frac is computed as hydrometeor-
weighted average, recommended for MW sensors

cloud_overlap_2col_user (4)
Two column, user specifies effective frac in
HydroFracEff profile variable

In Python, the same constants can be imported from pyrttov.option (defined in wrapper/pyrttov/
option.py), the only difference being that in Python the constants are all in upper case, so that for
example, to select the Chou-scaling thermal solver you can do:

from pyrttov.option import THERMAL_SOLVER_CHOU
myRttov.Options.ThermalSolver = THERMAL_SOLVER_CHOU

89

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix K: Gas IDs
Gas ID list: these are defined in src/wrapper/rttov_wrapper_handle.F90. See user guide Annex J for
more information about the profile variables and user guide section 8.4 for information about the
hydrometeor and aerosol types. These IDs are not required when using the object-oriented
interfaces.

ID Variable

1 Water vapour (q)

2 Ozone (O3)

3 CO2

4 N2O

5 CO

6 CH4

7 SO2

15 Cloud liquid water (clw) – non-scattering MW simulations

101-130 Aerosol concentration for particle types 1-30

101-113 Aerosol concentration for OPAC aerosol particle types 1-13

101-109 Aerosol concentration for CAMS aerosol particle types 1-9

201-230 Hydro fraction for hydrometeor particle types 1-30 (for per-hydrometeor fractions)

201 Hydro fraction for common case with single hydro fraction per layer

301-330 Hydrometeor concentration for hydrometeor particle types 1-30

301-308 Hydrometeor concentration for UV/VIS/IR hydrometeor particle types

301-305 Hydrometeor concentration for MW hydrometeor particle types

401-430 Hydro Deff for hydrometeor particle types 1-30

406 Hydro Deff for Clw Deff liquid cloud hydrometeor type

407 Hydro Deff for Baum ice cloud hydrometeor type

90

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

Appendix L: RTTOV wrapper subroutines
The following table lists the main subroutines coded in Fortran in the underlying RTTOV wrapper.
These subroutines are called internally by the object-oriented interfaces.

Subroutine Description

rttov_load_inst Specify initial RTTOV and wrapper options and load an instrument

rttov_set_options Modify one or more RTTOV and wrapper options

rttov_print_options Print the current RTTOV and wrapper options

rttov_call_direct Call the RTTOV direct model

rttov_call_k Call the RTTOV K model

rttov_call_direct_scatt_optp Call the RTTOV direct model for scattering with explicit optical properties

rttov_call_k_scatt_optp Call the RTTOV K model for scattering with explicit optical properties

rttov_drop_inst Deallocate the data for a specified instrument

rttov_drop_all Deallocate all instrument and atlas data

rttov_load_brdf_atlas
rttov_load_ir_emis_atlas
rttov_load_mw_emis_atlas

Initialise the BRDF and emissivity atlases

rttov_get_emisbrdf Return emissivity/BRDF values from a given atlas

rttov_drop_atlas Deallocate a BRDF or emissivity atlas

rttov_bpr Calculate bpr scattering parameter from given phase function

rttov_asym Calculate asymmetry parameter from given phase function

rttov_lcoef Calculate Legendre coefficients from given phase function

rttov_get_aer_clim_prof Generate climatological aerosol profiles based on the OPAC species

rttov_get_major_version Return the RTTOV major version number

rttov_get_minor_version Return the RTTOV minor version number

The main subroutine calls to the direct and K models return the simulated radiances and brightness
temperatures (or reflectances) as described above. RTTOV provides a number of other radiance and
transmittance outputs in the transmission, radiance and secondary radiance structures. Each member
of these structures can be made available (provided it was calculated by the simulation) by setting
the store_trans, store_rad, store_rad2, store_diag_output, and/or store_emis_terms wrapper options.
They can be accessed via one of the subroutine calls listed below. Note that these outputs are stored
independently for each instrument, but for any given instrument they are overwritten by any
subsequent direct or K model calls for that instrument.

Each subroutine interface is very similar: they all return the usual error status and take the
instrument ID and an array argument of the size given below. For C/C++ calls the array dimensions
must also be passed, but these are implicit for Python calls as described above.

Array sizes of nchanprof refer to nchannels * nprofiles (i.e. the total number of channels being

91

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

simulated). From C and C++ you can pass an array of shape (nprofiles, nchannels) instead of one of
shape (nchanprof) if this is more convenient. From Python you can pass an array of shape
(nchannels, nprofiles). See the example code. An example call from Python is:

> rad_clear = numpy.empty((nchannels,nprofiles), order='F', dtype=numpy.float64)
> err = rttov_get_rad_clear(inst_id, rad_clear)

The following tables list the surface emissivity/reflectance arrays, and the members of the RTTOV
transmission, radiance, radiance2, diagnostic output, and emissivity retrieval structures returned: see
Annex J in the user guide for more information about the RTTOV data structures.

Output surface emissivities and reflectances:

Subroutine Array argument and dimensions in C index order

rttov_get_emis_out emis_out(nprofiles, nsurfaces, nchannels)

rttov_get_brdf_out brdf_out(nprofiles, nsurfaces, nchannels)

rttov_get_diffuse_refl_out diffuse_refl_out(nprofiles, nsurfaces, nchannels)

Transmission structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_tau_total transmission%tau_total(nchanprof)

rttov_get_tau_levels transmission%tau_levels(nchanprof, nlevels)

rttov_get_tausun_total_path2 transmission%tausun_total_path2(nchanprof)

rttov_get_tausun_levels_path2 transmission%tausun_levels_path2(nchanprof, nlevels)

rttov_get_tausun_total_path1 transmission%tausun_total_path1(nchanprof)

rttov_get_tausun_levels_path1 transmission%tausun_levels_path1(nchanprof, nlevels)

rttov_get_tau_total_cld transmission%tau_total_cld(nchanprof)

rttov_get_tau_levels_cld transmission%tau_levels_cld(nchanprof, nlevels)

Radiance structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad_clear radiance%clear(nchanprof)

rttov_get_rad_total radiance%total(nchanprof) – this is returned in the rads argument to the
rttov_call_* subroutines

rttov_get_rad_cloudy radiance%cloudy(nchanprof)

rttov_get_bt_clear radiance%bt_clear(nchanprof)

rttov_get_bt radiance%bt(nchanprof) – this is returned for IR/MW channels in the btrefl
argument to the rttov_call_* subroutines

rttov_get_refl_clear radiance%refl_clear(nchanprof)

rttov_get_refl radiance%refl(nchanprof) – this is returned for UV/VIS/NIR channels in the
btrefl argument to the rttov_call_* subroutines

92

Python/C/C++ wrapper
for RTTOV v14

Doc ID : NWPSAF-MO-UD-057
Version : 1.0.2
Date : 2024 12 06

rttov_get_overcast radiance%overcast(nchanprof, nlayers)

rttov_get_bt_overcast radiance%bt_overcast(nchanprof, nlayers)

rttov_get_rad_quality radiance%quality(nchanprof) – integer array

Radiance2 structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad2_up radiance2%up(nchanprof, nlayers)

rttov_get_rad2_down radiance2%down(nchanprof, nlayers)

rttov_get_rad2_surf radiance2%surf(nchanprof, nlayers)

rttov_get_rad2_upclear radiance2%upclear(nchanprof)

rttov_get_rad2_dnclear radiance2%dnclear(nchanprof)

rttov_get_rad2_refldnclear radiance2%refldnclear(nchanprof)

Diagnostic output structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_diag_output_geometric_height diag_output%geometric_height(nprofiles, nlayers)

rttov_get_diag_output_geometric_height_half diag_output%geometric_height_half(nprofiles, nlevels)

rttov_get_diag_output_hydro_frac_eff diag_output%hydro_frac_eff(nprofiles)

Radar reflectivity structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_zef reflectivity%zef(nchanprof, nlayers)

rttov_get_azef reflectivity%azef(nchanprof, nlayers)

Emissivity retrieval structure members:

Here ncolumns is 1 for non-hydrometeor scattering simulations, 2 for hydrometeor scattering with
two-column cloud overlap, and 2*nlayers+1 for hydrometeor scattering with max/random overlap.

Subroutine Array argument and dimensions in C index order

rttov_get_emis_terms_bsfc emis_terms%bsfc(nchanprof)

rttov_get_emis_terms_column_weight emis_terms%column_weight(nchanprof, ncolumns)

rttov_get_emis_terms_tau_sfc emis_terms%tau_sfc(nchanprof, ncolumns)

rttov_get_emis_terms_rad_up emis_terms%rad_up(nchanprof, ncolumns)

rttov_get_emis_terms_rad_down emis_terms%rad_down(nchanprof, ncolumns)

--END--

93

	1. Introduction
	2. Compilation and example code
	3. RTTOV classes
	3.1. Introduction
	3.2. General method for calling RTTOV
	3.3. Setting RTTOV options
	3.4. Loading an instrument
	3.5. Specifying surface emissivities and reflectances
	3.6. Using the emissivity and BRDF atlases
	3.7. Profile data for an RttovSafe object (C++ only)
	3.8. Profile data for an Rttov object (C++ and Python)
	3.9. Specifying explicit hydrometeor/aerosol optical properties for scattering simulations
	3.10. Calling RTTOV
	3.11. Accessing RTTOV outputs
	3.12. Deallocating memory

	4. Notes on thread-safety and technical implementation
	5. Limitations of the wrapper
	6. Description of underlying wrapper interface
	6.1. Loading an instrument
	6.2. Changing RTTOV options
	6.3. Using the emissivity and/or BRDF atlases
	6.4. Calling the RTTOV direct model
	6.5. Calling the RTTOV K model
	6.6. Calling the RTTOV direct model with explicit optical properties
	6.7. Calling the RTTOV K model with explicit optical properties
	6.8. Deallocating memory
	6.9. Additional wrapper routines
	6.10. Specific information for Python
	6.11. Specific information for C/C++

	Appendix A: C++ RttovSafe and Rttov classes
	Appendix B: Python Rttov class
	Appendix C: C++ Profile class (used with RttovSafe objects)
	Appendix D: C++ Profiles class (used with Rttov objects)
	Appendix E: Python Profiles class
	Appendix F: C++ Options class
	Appendix G: Python Options class
	Appendix H: C++ Atlas class
	Appendix I: Python Atlas class
	Appendix J: Enumeration types (C++) and constants (Python)
	Appendix K: Gas IDs
	Appendix L: RTTOV wrapper subroutines

