
Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Python/C/C++ wrapper

for RTTOV v11.3

 James Hocking, Pascale Roquet, Pascal Brunel

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 1 December, 2006, between EUMETSAT and the Met Office, UK, by one
or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office,
ECMWF, KNMI and Météo France.

Copyright 2015, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks

1.0 2015-09-22 J Hocking First version.
1.1 2016-01-27 J Hocking, L-F Meunier Updates including Python classes.

1

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Table of contents
1.Introduction...3
2.Compilation and example code...4
3.General description of interface..6

3.1.Initialising the wrapper..6
3.2.Changing RTTOV options...9
3.3.Using the emissivity and/or BRDF atlases..10
3.4.Calling the RTTOV direct model...11
3.5.Calling the RTTOV K model...14
3.6.Deallocating memory...16

4.Specific information for Python..17
5.Specific information for C/C++...17
6.RTTOV classes..18

6.1.General method for calling RTTOV..19
6.2.Setting RTTOV options...20
6.3.Loading an instrument...20
6.4.Specifying surface emissivities and reflectances...20
6.5.Using the emissivity and BRDF atlases...21
6.6.Profile data for an RttovSafe object (C++ only)..22
6.7.Profile data for an Rttov object (C++ and Python)..23
6.8.Calling RTTOV..25
6.9.Accessing RTTOV outputs..26
6.10.Deallocating memory...27

7.Limitations of the wrapper..27
Appendix A: Gas IDs..28
Appendix B: RTTOV wrapper subroutines..29
Appendix C: RttovSafe and Rttov classes (C++ and Python)..31
Appendix D: Profile class (used with RttovSafe objects; C++ only)...41
Appendix E: Profiles class (used with Rttov objects; C++ and Python)..44
Appendix F: Options class (C++ and Python)..48
Appendix G: Enumeration types (C++)...52

2

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

1. Introduction
A new interface has been written for RTTOV v11.3 which allows RTTOV simulations using the
direct and K models to be run from Python, C or C++ . It is possible to use this interface to run
RTTOV without writing any Fortran code. C++ classes and a Python package have been created
which allow you to interact with RTTOV in an object-oriented style rather than calling the wrapper
interface subroutines directly.

The intention behind the design of the interface is to provide access to as much RTTOV
functionality as possible while keeping the interface simple.

This document explains how to call RTTOV from Python, C and C++. You should read the RTTOV
user guide (at least the sections which pertain to the kinds of simulations you wish to carry out) in
order to understand how RTTOV works before reading this document: this document cannot be
understood without reference to the RTTOV user guide.

Section 2 of this document describes compilation of RTTOV with the wrapper. There are two ways
to use the RTTOV wrapper:

You can call the interface subroutines directly as described in section 3. Sections 4 and 5 provide
additional information specific to Python and C/C++ respectively.

Alternatively a collection of C++ classes have been created which enable RTTOV to be called using
object-oriented-style programming. These classes are described in section 6. This is a more
user-friendly way of calling RTTOV through the wrapper. There is a similar interface available in
Python via the pyrttov package.

You do not necessarily need to read sections 3-5 to understand section 6, but the earlier sections
may contain useful information.

Section 7 outlines the current limitations of the wrapper. Finally, the appendices provide some
additional information about the Fortran-Python/C/C++ interface and the object-oriented classes.

Currently the wrapper supports calls to rttov_direct and rttov_k for clear-sky and IR scattering
calculations optionally including use of the surface emissivity and BRDF atlases. In the future
support for RTTOV-SCATT and PC-RTTOV will be added.

3

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

2. Compilation and example code
The wrapper Fortran source code is contained in the src/wrapper/ directory. This code depends on
the RTTOV emissivity and BRDF atlases which in turn depend on the NetCDF or, as of RTTOV
v11.3, the HDF5 library. The HDF5 format atlas files are the recommended ones to use because
they are much smaller in size than the NetCDF equivalents.

The easiest way to compile RTTOV is to edit the file build/Makefile.local to point to either your
HDF5 (recommended) or NetCDF installation and then do:

$ cd src/
$../build/rttov_compile.sh

This runs an interactive script for compiling RTTOV. If you want to compile RTTOV manually
refer to section 5.2 of the user guide for details.

Compiling C/C++ code which calls RTTOV

Example Python, C and C++ code is contained in the wrapper/ directory in the top-level of the
RTTOV installation.

In order to call RTTOV from C or C++ code you need to include the
src/wrapper/rttov_c_interface.h header file in your code and compile against the RTTOV libraries.
For the object-oriented interface you need to include the relevant class definitions. The example
code in the top-level wrapper/ directory demonstrates this.

Running Python code which calls RTTOV

Having compiled RTTOV as directed above the lib/ directory will contain the Fortran-Python
interface in the file rttov_wrapper_f2py.so. You should ensure this is in your current directory or
your $PYTHONPATH.

To call the interface subroutines directly you can import them from this file, for example in Python:

> from rttov_wrapper_f2py import rttov_load_inst, \
 rttov_call_direct, \
 rttov_drop_all

See the examples in the top-level wrapper/ directory which demonstrate calling RTTOV from
Python, e.g. example_python.py.

Alternatively you can use the pyrttov package which provides an object-oriented interface to
RTTOV.

4

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Example code and source files
The following files can be found in the wrapper/ directory:

interface_example_cpp.cpp Example of calling interface directly in C++
interface_example_c.c Example of calling interface directly in C
interface_example_python.py Example of calling interface directly in Python
pyrttov_example.cpp Example of using pyrttov Python package
Rttov_example.cpp Example of using Rttov class in C++
RttovSafe_example.cpp Example of using RttovSafe class in C++
Makefile Makefile to compile all C and C++ examples

These can be used as templates for your own code. The Makefile demonstrates how to compile C
and C++ code which calls RTTOV. In order to compile the examples you should look at the top of
the Makefile to see if you need to modify the compilers, compiler flags and/or the RTTOV libraries.
After editing the Makefile as necessary you can compile the example code in the wrapper/
directory:

$ make

The following files define the classes used by the C++ object oriented interface to RTTOV (see
section 6); again the Makefile demonstrates how to compile code which uses the object oriented
interface:

RttovSafe.h, RttovSafe.cpp Class allowing you to call RTTOV for an instrument – carries
out some checks on the profiles to help prevent errors.

Profile.h, Profile.cpp Class representing a single profile for use with RttovSafe
Rttov.h, Rttov.cpp Class allowing you to call RTTOV – limited error checking.
Profiles.h, Profiles.cpp Class representing one or more profiles for use with Rttov
Options.h, Options.cpp Class representing RTTOV and wrapper options

The pyrttov Python package provides an object-oriented interface to RTTOV in Python. The
package source files are contained in the pyrttov/ directory. The pyrttov_doc/ directory can be used
to generate documentation for pyrttov using Sphinx: from within pyrttov_doc/ run

$ make html

This requires both the pyrttov package and the RTTOV rttov_wrapper_f2py.so library to be in your
$PYTHONPATH: the documentation can be found in _build/html/index.html. Section 6 provides
more details on the pyrttov package.

5

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

3. General description of interface
This section describes the interface in general terms: the Python and C/C++ interfaces are very
similar. To understand the wrapper interface itself you should read this and then refer to the
following two sections below which contain information specific to Python and C/C++. Appendix
B lists all subroutines in the RTTOV wrapper.

The wrapper allows you to load coefficients for one or more instruments simultaneously, set the
options associated with each instrument, make calls to the RTTOV direct and K models, and access
the resulting data. There are also subroutine calls to initialise the IR and MW emissivity and BRDF
atlases, and calls to free allocated memory.

Each initialised instrument is entirely independent. It is possible to load the same coefficients
multiple times, giving you multiple independent instances of one instrument. For example, you
could extract a different channel set for each instance if you wanted to simulate the instrument for
different purposes. Alternatively you can initialise a collection of different instruments. Each
initialised instrument has its own set of RTTOV options associated with it.

It is important to realise that although the instruments are independent, the emissivity and BRDF
atlases are shared between all loaded instruments. More details are given below.

The only restriction on the interface (aside from the available memory) is that you may initialise a
maximum of 100 instruments concurrently.

3.1. Initialising the wrapper

The rttov_load_inst subroutine is used to load an instrument. In this call you provide a string
containing the coefficient filename(s) to load (the “rtcoef” file and optionally aerosol or cloud IR
scattering files), any RTTOV options you wish to set and some wrapper-specific options. The
format of this string is described below along with the wrapper-specific options.

This subroutine returns an ID which is used in subsequent subroutine calls to identify this
instrument. If the returned ID is less than or equal to 0 this indicates that an error occurred and the
instrument was not initialised. The interface is as follows:

rttov_load_inst(&
 inst_id, &
 opts_str, &
 nchannels, &
 channels)

Argument Type Intent Description

inst_id Integer out returned ID for instrument; if <=0 then error occurred (instrument was not
initialised)

opts_str Character string in String containing options and coef filenames (see below).

nchannels Integer in Size of channels array (not required in Python).

channels(:) Integer in Channels to read from coefficient files. If set to (0) (i.e. an array of length
one containing a zero) all channels will be read from the coefficient file.

6

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Notes:

To initialise the wrapper for multiple instruments you should make one call to
rttov_load_inst per instrument.

If you specify a channel list in channels(:) then beware that this will impact the channel numbering
when you make calls to RTTOV later. See the user guide section 7.4 for more information. In short:
if you have extracted n channels when reading the coefficient file they will subsequently be referred
to as 1,2,...,n rather than by their original channel numbers. If all channels from the coefficient file
are read in you can specify a subset of channels to simulate when you call RTTOV. Alternatively
you can extract just the required channels into a new coefficient file using rttov_conv_coef.exe (see
user guide Annex A) and then read all channels from this new file when loading the coefficients.

Specifying the options string

The options string consists of multiple space-separated key-value pairs. Each key is a character
string related to an option and the value is an integer, real or character string depending on the
option being set. It is important that there are no spaces in the option names (keys).

RTTOV coefficient files – rtcoef file mandatory, others optional

Specify full paths to the RTTOV coefficient file(s):

Key Value Description

file_coef Full path to rtcoef file Mandatory, path to rtcoef file.

file_scaer Full path to IR aerosol coef file For IR aerosol simulations, path to scaer coef file.

file_sccld Full path to IR cloud coef file For IR cloudy simulations, path to sccld coef file.

RTTOV options - optional

Every option available in the RTTOV options structure (see user guide Annex O) can be set in the
options string. The key value is given as in the table in Annex O of the user guide. For logical
options the value should be 0 or 1 for false/true respectively. The usual RTTOV default values apply
(see user guide). Remember: there must be no spaces in the option names specified in the string.
Some examples are given below:

Key Value Description

opts%config%verbose 0 or 1 Set RTTOV verbosity flag.

opts%rt_ir%addsolar 0 or 1 Turn solar radiation off/on.

opts%interpolation%interp_mode Integer 1-5 Set interpolation mode.

7

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Wrapper-specific options - optional

Set options that are related specifically to the wrapper:

Key Value Description

verbose_wrapper 0 or 1 Set to 1 for more verbose output from the wrapper (default 0, all output
suppressed except fatal error messages).

nthreads Integer If <=1 RTTOV is called via the standard interface (e.g. rttov_direct), if
>1 RTTOV is called via the parallel interface (e.g. rttov_parallel_direct)
using the specified number of threads (default 1).

nprofs_per_call Integer – greater than 0 Sets the number of profiles passed to each call to rttov_direct or rttov_k
within the wrapper (default 1).

check_opts 0 or 1 If set to 1 the Fortran rttov_user_options_checkinput
subroutine (see user guide Annex N) is called to help ensure consistency
between the selected options and the loaded coefficient file (default 1).

store_trans 0 or 1 Set to 1 to enable access to transmittance outputs from RTTOV calls
(default 0).

store_rad 0 or 1 Set to 1 to enable access to radiance outputs from RTTOV direct model
calls (default 0).

store_rad2 0 or 1 Set to 1 to enable access to secondary radiance outputs from RTTOV
direct model calls (default 0). If this is set to 1 then store_rad will
automatically be set to 1 as well.

Notes:

To take advantage of multi-threaded execution (by setting nthreads > 1) you must compile RTTOV
with OpenMP compiler flags (see user guide).

When calling RTTOV through the wrapper (see below) you can pass any number of profiles. The
wrapper will then break these down into chunks and the underlying rttov_direct/etc
subroutines are called for nprofs_per_call at a time until all profiles have been simulated. You may
obtain improved performance (especially with multi-threaded execution) by increasing
nprofs_per_call above the default of 1, but if you are simulating a very large number of channels
you may run out of memory if this is set too high.

The calls to RTTOV include arguments which return the total TOA radiances and the equivalent
brightness temperatures or reflectances (depending on channel wavelength). If you require access to
additional RTTOV radiance or transmittance outputs you should set the store_trans, store_rad
and/or store_rad2 options. You can then use the subroutines listed in Annex B to access this
information after calling RTTOV. Note that if store_rad2 is set then store_rad will also be set
automatically. See the user guide for more information on RTTOV outputs.

If you are performing cloud or aerosol scattering simulations you must ensure the addclouds and/or
addaerosl RTTOV options are set in the options string when loading the instrument.

8

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

3.2. Changing RTTOV options

It is possible to modify the options at any time for an instrument which has been initialised by a call
to rttov_load_inst.

rttov_set_options(&
 err, &
 inst_id, &
 opts_str)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) whose options should be
updated.

opts_str Character string in String containing options to change.

You can change any options in the options structure and any of the wrapper-specific options in this
call. Setting the coefficient file names has no effect in a call to rttov_set_options. Options
that were previously set are retained so you only need to specify options you wish to change.

Example options string in Python:

This string sets up directories as if being called from the top-level wrapper/ directory:

opts_str = 'file_coef ' \
 '../rtcoef_rttov11/rttov9pred54L/rtcoef_msg_3_seviri.dat ' \
 'opts%interpolation%addinterp 1 ' \
 'opts%rt_ir%o3_data 1 ' \
 'opts%rt_ir%addsolar 1 ' \
 'nthreads 4 '

NB The space separation between options is important and there must be no spaces in option
names or file/path names!

See the example code in the top-level wrapper/ directory for more examples.

You can also print the RTTOV and wrapper options by calling rttov_print_options (this
calls the RTTOV rttov_print_opts Fortran subroutine, see user guide Annex N):

rttov_print_options(&
 err, &
 inst_id)

where err is the output return code and inst_id is the input ID for the instrument whose options you
wish to print.

9

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

3.3. Using the emissivity and/or BRDF atlases

In order to use the emissivity or BRDF atlases they must be initialised before any calls to RTTOV.
There are separate subroutine to set up the BRDF, IR emissivity and MW emissivity atlases.

rttov_ir_emis_atlas_setup(err, path, month, version, inst_id, ang_corr)
rttov_mw_emis_atlas_setup(err, path, month, version, inst_id)
rttov_brdf_atlas_setup(err, path, month, version, inst_id)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

path Character string in String containing path to atlas data files.

month Integer in Month (1-12) for which to initialise atlas.

version Integer in Atlas version number, set to -1 for default version.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument for
which to initialise atlas (may be 0: see below).

ang_corr Integer in IR atlas only: set non-zero to include the zenith angle emissivity
correction (see user guide for more information).

Notes:

The emissivity and BRDF atlases may each be initialised once and are subsequently shared by all
initialised instruments until they are deallocated (see section 3.6).

For the IR emissivity and BRDF atlases, currently only one version exists so you can set the version
number to -1 for these.

For the MW emissivity atlas, there is a choice between the TELSEM and CNRM MW atlases (see
the user guide for the version numbers). TELSEM is the default and can be selected by providing a
version number of -1.

It is important to note that the CNRM atlas is always initialised for a specific instrument (see the
user guide for details). Therefore you must provide a valid inst_id if initialising the CNRM MW
atlas and it is not advisable to try to use this atlas for multiple different loaded MW instruments.

The TELSEM atlas is never initialised for any specific MW instrument. Therefore you can always
supply an inst_id of 0 for this atlas and you can use this with any number of loaded MW
instruments.

The IR emissivity and BRDF atlases may be initialised for a specific instrument by specifying a
valid inst_id for a previously loaded instrument in which case the calls to the atlas are significantly
faster. Alternatively they may be initialised for multiple instruments by specifying an inst_id of 0: in
this case they can be used for any loaded VIS/IR instruments.

If performance is critical you should consider the single-instrument initialisation for the IR
emissivity and BRDF atlases. However if you initialise these atlases for one inst_id and you try to
use them with a different inst_id you will obtain spurious emissivities/BRDFs.

10

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

3.4. Calling the RTTOV direct model

Once a coefficient file has been loaded you can call RTTOV to simulate radiances for an arbitrary
number of profiles. Profile data is input via a series of integer and real (float) arrays. The
top-of-atmosphere radiances and brightness temperatures (or reflectances) are returned via array
arguments. The interface is as follows:

rttov_call_direct(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 s2m, &
 simplecloud, &
 icecloud, &
 zeeman, &
 p, &
 t, &
 gas_id, &
 gases, &
 surfemisrefl, &
 btrefl, &
 rads, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument
to simulate.

channel_list(nchannels) Integer in Channel numbers to simulate.

datetimes(nprofiles,6) Integer in (year, month, day, hour, minute, second) for each profile.

angles(nprofiles,4) Real in (zenangle, azangle, sunzenangle, sunazangle) for each profile.

surfgeom(nprofiles,3) Real in (latitude, longitude, elevation) for each profile.

surftype(nprofiles,2) Integer in (skin%surftype, skin%watertype) for each profile.

skin(nprofiles,9) Real in (skin%t, skin%salinity, snow_frac, skin%foam_fraction, skin
%fastem(1:5)) for each profile.

s2m(nprofiles,6) Real in (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v, s2m%wfetc) for
each profile.

simplecloud(nprofiles,2) Integer in (ctp, cfraction) for each profile.

11

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

icecloud(nprofiles,2) Integer in (ish, idg) for each profile.

zeeman(nprofiles,2) Real in (Be, cosbk) for each profile.

p(nprofiles,nlevels) Real in Pressure levels for each profile.

t(nprofiles,nlevels) Real in Temperature on pressure levels for each profile.

gas_id(ngases) Integer in List of IDs for gases, aerosol and cloud profiles present in the
gases array, see below.

gases(ngases,nprofiles,nlevels) Real in Gas, aerosol and cloud concentrations on levels/layers for each
profile: must contain at least water vapour profiles, see below.

surfemisrefl(2,nprofiles,nchannels) Real inout Input surface emissivity and BRDF values for each channel;
on output contains the values used by RTTOV, see below.

btrefl(nprofiles,nchannels) Real inout Output total TOA brightness temperatures (for all channels at
wavelengths > 3µm) or reflectances (wavelengths < 3µm).

rads(nprofiles,nchannels) Real inout Output total TOA radiances.

nchannels Integer in Number of channels to simulate (not required in Python).

ngases Integer in Size of gas_id(:) array, see below (not required in Python).

nlevels Integer in Number of levels in input profiles (not required in Python).

nprofiles Integer in Number of profiles being passed in (not required in Python).

Notes:

If you extracted a subset of channels from the coefficient file in the rttov_load call, then the channel
numbers in channel_list(:) are indexes into this list (see user guide section 7.4).

The array index ordering shown above is that which should be used in C/C++: this is opposite to
Fortran array index ordering. For Python you should reverse the order of the indices for the 2- and
3-dimensional array arguments. It may also be more efficient to ensure that Python stores the arrays
in Fortran-contiguous order. See the Python, C and C++ examples which illustrate how to declare
the profile data arrays.

See Annex O and table 10 in the user guide for information about profile variables (the names in the
table above relate to the names in the Fortran profile structure) and which variables are used in
which circumstances. All arguments must be supplied to the interface, but if particular variables are
not used in the simulations you are performing the arrays can just be initialised with zeros.

Surface emissivity/BRDF

You should refer to the user guide sections 7.5 and 7.6 to understand how RTTOV treats surface
emissivity and BRDF.

The surfemisrefl(0,:,:) and surfemisrefl(1,:,:) arrays are used to control the input or calculation of
surface emissivities and BRDFs respectively for all channels for each profile. If you provide
non-negative (i.e. >=0) values for any channel then calcemis (or calcrefl) will be set to false for that
channel and the supplied value is used for the surface emissivity (or BRDF). If a value in
surfemisrefl(:,:,:) is negative then for profiles over sea (as defined by skin%surftype), calcemis (or
calcrefl) will be set to true. Over land and sea-ice, the relevant atlas will be used to provide the

12

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

emissivity (or BRDF) value if it was initialised, otherwise calcemis (or calcrefl) will be set to true.

On exit from the subroutine call the surfemisrefl array is overwritten with the emissivity and BRDF
values used by RTTOV: these will be identical to the input values where the input values were
non-negative, otherwise they will be the values calculated by RTTOV's internal surface models or
the values obtained from the respective atlases.

NB When making multiple calls to the wrapper interface be sure to re-initialise the surfemisrefl
array appropriately between calls to avoid inadvertently passing in emissivity and BRDF values
from the previous call.

Specifying gas, aerosol and cloud profiles

RTTOV coefficient files support varying numbers of trace gases (see table 4 in section 3 of the user
guide). In addition, IR cloud and aerosol simulations based on “method 1” (see user guide sections
8.5 and 8.6) require one or more profiles of cloud and aerosol concentrations and also a cloud
fraction array for cloudy simulations. Any or all of these are supplied to the interface using the
gases array.

The list of gas, aerosol and cloud inputs you wish to pass into RTTOV should be listed in the gas_id
array. There is one element per input variable which should contain the corresponding ID for that
variable (see appendix A of this document for the list of IDs). The gases array should then be
populated with the appropriate concentrations in the corresponding order.

The gas_id array must always contain at least the water vapour ID (1) because this is a mandatory
input for RTTOV. The order of the variables in gas_id and gases does not matter, but the two arrays
must be consistent with one another.

Also note that aerosol and cloud inputs are on layers rather than levels: profiles of these variables
should be written to the first nlayers values in the array, the final value (at nlevels) is ignored.

As an example, suppose we wish to run an IR cloudy simulation with the STCO and ice cloud
types. We must always include water vapour and the cloudy simulations also require cfrac (cloud
fraction). Then the gas_id and gases arrays should be specified as follows (pseudo-code):

ngases = 4, for gas IDs see appendix A:
1=>q, 20=>cfrac, 21=>STCO (cloud type 1), 30=>ice cloud (cloud type 6)
gas_id[:] = [1, 20, 21, 30]

water vapour – on levels
gases[0:nprofiles, 0:nlevels, 0] = q[0:nprofiles, 0:nlevels]

cfrac – on layers
gases[0:nprofiles, 0:nlevels-1, 1] = cfrac[0:nprofiles, 0:nlevels-1]

STCO – on layers
gases[0:nprofiles, 0:nlevels-1, 2] = strat_cont[0:nprofiles, 0:nlevels-1]

ice cloud – on layers
gases[0:nprofiles, 0:nlevels-1, 3] = ice_cloud[0:nprofiles, 0:nlevels-1]

13

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Outputs

The output radiances and brightness temperatures (or reflectances for VIS/NIR channels) are
written to the rads and btrefl arrays. These correspond to the radiance%total, radiance%bt and
radiance%refl output arrays: the latter two are “merged” into the btrefl array such that for channels
with wavelengths above 3µm BTs are stored while for other channels reflectances are stored.
Additional subroutine calls are available which give access to all of the RTTOV radiance and
transmittance outputs, assuming the relevant wrapper options were set (store_rad, store_rad2,
store_trans): see section 3.1 and appendix B.

3.5. Calling the RTTOV K model

The RTTOV K model interface is similar in many ways to the direct model interface: arguments
with the same name behave in exactly the same way as described in the previous section. The K call
has some additional arguments to hold the input BT and/or radiance perturbations and the output
profile variable Jacobians. The interface is described below with details given only for the K
arguments not present in the interface for rttov_call_direct:

rttov_call_k(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 skin_k, &
 s2m, &
 s2m_k, &
 simplecloud, &
 simplecloud_k, &
 icecloud, &
 zeeman, &
 p, &
 p_k, &
 t, &
 t_k, &
 gas_id, &
 gases, &
 gases_k, &
 surfemisrefl, &
 surfemisrefl_k, &
 btrefl, &
 rads, &
 bt_k, &
 rads_k, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles)

14

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Argument Type Intent Description

skin_k(nprofiles,9) Real inout Calculated Jacobians for (skin%t, skin%salinity, snow_frac*,
skin%foam_fraction, skin%fastem(1:5)) for each profile.
*snow_frac is not active in the RTTOV K model so the
snow_frac Jacobian is always zero.

s2m_k(nprofiles,6) Real inout Calculated Jacobians for (s2m%p, s2m%t, s2m%q, s2m%u,
s2m%v, s2m%wfetc) for each profile.

simplecloud_k(nprofiles,2) Integer inout Calculated Jacobians for (ctp, cfraction) for each profile.

p_k(nprofiles,nlevels) Real inout Calculated Jacobians for pressure for each profile.

t_k(nprofiles,nlevels) Real inout Calculated Jacobians for temperature for each profile.

gases_k(ngases,nprofiles,nlevels) Real inout Calculated Jacobians for gas, aerosol and cloud, variable
order matches the input gas_id and gases arrays, see above.

surfemisrefl_k(2,nprofiles,nchannels) Real inout Calculated Jacobians for surface emissivity and BRDF.

bt_k(nprofiles,nchannels) Real in Input BT perturbations (only for channels at wavelengths >
3µm).

rads_k(nprofiles,nchannels) Real in Input radiance perturbations.

Notes:

The user guide provides more detailed information on calling the RTTOV K model. The input
perturbations are supplied in brightness temperature (bt_k) for channels at wavelengths greater than
3µm if opts%rt_all%switchrad is set true in the options. Otherwise perturbations are supplied in
radiance (rads_k). It is safe to set input perturbations in both bt_k and rads_k for all channels:
RTTOV will use the appropriate perturbation for each channel based on the setting of the switchrad
option.

15

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

3.6. Deallocating memory

When you have finished calling RTTOV you should make a call to release the memory allocated by
the wrapper.

If you simply wish to free all memory allocated by the wrapper for all instruments and atlases you
can call:

rttov_drop_all(err)

Here err is the usual intent(out) return code (non-zero implies an error condition).

Alternatively you can deallocate memory for specific instruments or atlases.

You can deallocate the memory for a single instrument using:

rttov_drop_inst(err, inst_id)

Again err is the intent(out) return code (non-zero implies an error condition) and inst_id is the ID of
the instrument to deallocate.

You can deallocate any atlases you initialised using:

rttov_ir_emis_atlas_dealloc()

rttov_mw_emis_atlas_dealloc()

rttov_brdf_atlas_dealloc()

These subroutines have no arguments and they are safe to call even if the corresponding atlas was
not initialised.

16

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

4. Specific information for Python
By default integers are 32-bit (e.g. numpy.int32) and reals are 64-bit (e.g. numpy.float64).

The error return code arguments (err) which are INTENT(OUT) appear as return values to the
Python function call and as such do not appear among the function arguments. This also applies to
inst_id in calls to rttov_load_inst.

In addition the array size arguments listed in section 3 are implicit in the Python interface: they are
calculated from the dimensions of the input arrays and do not appear among the function arguments.

For example in Python the wrapper initialisation call looks like this:

> inst_id = rttov_load_inst(opts_str, channels)

Note inst_id is the return value and nchannels is implicitly determined from len(channels) by the
interface and is not present as an argument.

You should declare all Python arrays with array indices in the opposite order to those listed in
this document. You may also want to ensure they are in Fortran-contiguous order in memory by
supplying the order='F' argument to the Numpy array initialisation calls. The example code provides
illustrations of how to declare array arguments.

5. Specific information for C/C++
By default integers are 32-bit (e.g. C int) and reals are 64-bit (e.g. C double).

When passing a character string argument to Fortran from C/C++ it is necessary to include the
string length as an additional argument. Usually this is appended as the final argument in the call,
but for some compilers it may need to be supplied directly following the string argument. See the
example C and C++ code: this applies to rttov_load_inst, rttov_set_options and the
atlas initialisation subroutines.

The C-style array index ordering is opposite to that used in Fortran. You should allocate arrays with
dimensions as shown in this document to ensure data is passed correctly between your C or C++
code and the RTTOV Fortran code.

All interface subroutine names should have an underscore appended '_' as in
src/wrapper/rttov_c_interface.h. See this header file for interfaces to all wrapper subroutines.

17

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

6. RTTOV classes
C++ object-oriented interface

Five C++ classes have been created in order to provide an object-oriented interface to RTTOV:
Rttov, RttovSafe, Options, Profiles and Profile.

RttovSafe and Rttov are the primary classes used to call RTTOV: one instance of either class is
associated with one instrument.

The Rttov object is a fast way to call RTTOV and would usually be associated with a Profiles
instance which represent one or more RTTOV profiles structures in the form of a collection of
arrays.

The RttovSafe object provides a safer way to call RTTOV because it carries out some checks on the
input profiles before passing them to the RTTOV interface. This is a more user-friendly, but less
efficient way to call RTTOV. It is associated with a C++ vector of one or more instances of the
Profile object each of which represents a single RTTOV profile structure.

Each Rttov and RttovSafe object is associated with an instance of the Options class which
represents the RTTOV options structure and also some additional options specific to the wrapper.
Through these classes it is also possible to use the RTTOV land surface emissivity and BRDF
atlases.

In reading the descriptions of the classes below you should refer to the user guide to understand the
RTTOV input and output structures including the options and profiles structures and other aspects
of RTTOV such as the treatment of surface emissivity and BRDF. You should also refer to the
example code in the wrapper/ directory which provides examples of using these classes.

All classes and associated enumerations are defined within the rttov:: namespace.

The following documentation for these classes assumes you are familiar with C++ programming.

18

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Python pyrttov package

The Python implementation of the object-oriented interface follows the C++ version closely, but
there are some important differences:

• to use the package it needs to be in your $PYTHONPATH (or the current directory) and you
can just use import pyrttov.

• the pyrttov package includes only Options, Profiles and Rttov classes (no “RttovSafe” or
“Profile” classes) as the classes carry out a lot of checks so there is no need for the “safe”
version.

• there are no get/set methods to return or specify options, profile variables and outputs.
Instead you can refer to the members directly. The member names are identical to those for
the C++ classes with the “get”/”set” omitted (see the following sections for examples and
also the example code provided).

Note that for the pyrttov package the array index ordering is the same as the C/C++ ordering
(which is contrary to the order required by the Python interface described in sections 3 and 4
above). Therefore the array ordering is the same for the C++ and Python classes.

The following sections describe both the C++ and Python classes. Where the documentation
mentions the “Rttov or RttovSafe” classes, in Python this means just the Rttov class. Where there
are important differences between the Python and C++ these are highlighted, but note that where the
documentation refers to get/set methods these apply to the C++ classes and in the Python you use
the member variable directly (same name omitting “get”/”set”) to return data (“get”) or to assign
values (“set”).

6.1. General method for calling RTTOV

An instance, say “myRttov”, of either the Rttov or RttovSafe classes (C++) or the Rttov class
(Python) should be declared. Each such instance represents a single instrument to simulate. The
methods of the RttovSafe and Rttov C++ classes are given in Appendix C: the majority of methods
are common to both classes. The difference is in the way the profile data are associated with
instances of each class. The methods and members of the Python Rttov class are also given in
Appendix C.

The general steps for calling RTTOV via the object-oriented interface are similar to those described
in the user guide. This typically involves:

• setting the RTTOV options

• loading an instrument

• optionally initialising the emissivity and/or BRDF atlases

• specifying the surface emissivities and reflectances

• specifying the profile data to simulate

19

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

• calling RTTOV

• accessing the simulation outputs

• deallocating memory

Each of these steps is described in more detail below.

6.2. Setting RTTOV options

This myRttov object has a member named “options” (C++) or “Options” (Python) which is an
instance of the Options class. This is used to specify the RTTOV and wrapper-specific options. The
methods (C++) and members (Python) of this class are listed in Appendix F. The user guide
describes the RTTOV options (see Annex O). See section 3.1 above for a description of the
wrapper-specific options.

In C++: to change an option associated with an Rttov or RttovSafe instance named “myRttov” you
should use, for example:

myRttov.options.setApplyRegLimits(true);

In Python the equivalent statement is:

myRttov.Options.ApplyRegLimits = True

6.3. Loading an instrument

The name of the optical depth (“rtcoef_”) coefficient file should be specified by calling the
myRttov.setFileCoef method (C++) or assigning to myRttov.FileCoef (Python). If required the IR
cloud and/or aerosol coefficient file names should also be specified using the setFileSccld and
setFileScaer methods respectively.

The coefficients are read in by calling the myRttov.loadInst method. If called without arguments
all channels are read from the coefficient file. Alternatively a C++ vector/numpy array of channel
numbers may be specified in order to read coefficients for a subset of channels. Note that if a subset
of n channels is read, they are referenced by numbers 1...n subsequently rather than by their original
channel numbers as described in the RTTOV user guide.

After an instrument has been loaded any of the options can still be changed. If you call the
myRttov.updateOptions method and the wrapper “check_opts” option is set to true this will force
a consistency check on the options and loaded coefficients and will report any errors which can be
useful for debugging simulations. The myRttov.printOptions method will print out the options
structure (this calls the rttov_print_opts Fortran subroutine).

6.4. Specifying surface emissivities and reflectances

You can pass your own values for surface emissivity and/or reflectance into RTTOV or RTTOV can
provide suitable values. The user guide provides full details of the treatment of surface emissivity
and reflectance. You should declare an array surfemisrefl with dimensions [2][nprofiles]
[nchannels].This should be initialised before every call to RTTOV. The first dimension of this array

20

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

provides access to emissivities (index 0) and reflectances (index 1) for all channels and profiles
being simulated. Where values in this input array are greater than or equal to zero the corresponding
elements of the RTTOV calcemis and calcrefl arrays will be set to false and these input values of
the surface parameters will be used for the simulations. Where the values in surfemisrefl are less
than zero the internal sea surface emissivity and reflectance models are used for sea surfaces. For
land and sea-ice surfaces, if the atlases have been initialised (see next section) these will be used to
provide values, otherwise RTTOV will supply default values (as described in the user guide). The
use of the atlases is described in section 6.2. The array is associated with the myRttov instance
using the setSurfEmisRefl method (C++) or assigning to the SurfEmisRefl member (Python).

Once RTTOV has been called the surfemisrefl array contains the values that were used by RTTOV.
Where you supplied non-negative values the elements of the array will be unchanged. This can be
accessed via the getSurfEmisRefl method (C++) or via the SurfEmisRefl member (Python).

NB When making multiple calls to RTTOV be sure to re-initialise the surfemisrefl array
appropriately between calls to avoid inadvertently passing in emissivity and BRDF values from
the previous call.

When using pyrttov it is not mandatory to specify myRttov.SurfEmisRefl before calling RTTOV.
If it is not specified then it is equivalent to setting calcemis and calcrefl to true for all channels.
After calling RTTOV myRttov.SurfEmisRefl contains the values used by RTTOV. If you have
assigned an array to SurfEmisRefl and you wish to delete this before making another call to
RTTOV you can use

del myRttov.SurfEmisRefl

6.5. Using the emissivity and BRDF atlases

The emissivity and BRDF atlases may each be initialised once and are subsequently shared by all
instruments represented by instances of RttovSafe and Rttov until they are deallocated.

In order to use one or more of the atlases the paths to the atlases must first be specified using the
myRttov.setBrdfAtlasPath and the myRttov.setEmisAtlasPath methods.

Once the instrument has been loaded the atlas(es) can be initialised. This is achieved by calling the
myRttov.brdfAtlasSetup and/or myRttov.irEmisAtlasSetup methods for visible/IR sensors and
the myRttov.mwEmisAtlasSetup method for MW instruments. There are alternative interfaces for
these methods: the simplest take no arguments and they will obtain the month for which to initialise
the atlas from the first profile's month (this requires the profile data to have been loaded before the
atlases are initialised – see next section). Alternatively you can explicitly select the month for which
to initialise the atlas in the setup method calls and also optionally specify other options. The atlas
setup methods return boolean values indicating success (true) or failure (false).

In order to use the atlases for land and sea-ice surfaces the corresponding input emissivities and/or
BRDFs in the surfemisrefl array should be set to negative numbers (over sea surfaces the internal
RTTOV sea surface emissivity and reflectance models will be used). (As noted in section 6.4, with
pyrttov you do not need to specify myRttov.SurfEmisRefl at all if you want to use the atlases over

21

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

land and sea-ice and the sea-surface models over sea).

When the destructor of an RttovSafe and Rttov instance is called it will invoke the emissivity and
BRDF atlas deallocation subroutines for those atlases which were successfully initialised through
the setup methods of the same instance. Therefore if you destroy an RttovSafe or Rttov object
which was used to load the atlases then you must re-initialise the atlases if you want to continue
using them with other existing RttovSafe or Rttov objects. You can manually deallocate the atlas
data by calling the myRttov.deallocBrdfAtlas, myRttov.deallocIrEmisAtlas or
myRttov.deallocMwEmisAtlas methods, but again note that you can only deallocate an atlas using
the method of the instance which was used to allocate that atlas. This is useful if you want to
re-initialise an atlas for a different month or if you want to re-initialise an atlas for use with a
different instrument (see below), for example.

By default the BRDF and IR emissivity atlases are initialised so that they can be used with all
concurrently loaded visible/IR instruments. They can optionally be initialised for use with a single
instrument by setting the “single_inst” boolean argument to true when initialising the atlases. This is
significantly faster and can be very beneficial if running RTTOV for many profiles. However it is
very important to understand that if the atlases are initialised for a particular instrument with a given
set of loaded channels then they cannot be used by another instance of RttovSafe or Rttov unless
that instance represents exactly the same set of channels for the same instrument.

You should be careful when using the CNRM MW atlas with multiple instances of RttovSafe or
Rttov because this atlas is always initialised for a specific instrument (see the user guide). It is not
recommended to use this atlas with multiple instances of the RttovSafe or Rttov classes.

By contrast the TELSEM atlas (the default MW emissivity atlas) is never initialised for a single
instrument and can always be used by all loaded MW instruments.

6.6. Profile data for an RttovSafe object (C++ only)

The Profile class represents a single RTTOV profile structure. It is used to provide the atmospheric
and surface variables to the RttovSafe instance in the form of a C++ vector of Profile objects. The
methods of the Profile class are given in Appendix D.

A Profile object is instantiated as follows, where nlevels is the number of levels for the profile:

rttov::Profile myProfile(nlevels);

You can then use the methods listed in Appendix D to specify the profile variables. Many of these
methods are self-explanatory: for example, the setT method is used to specify the temperature
profile.

When doing IR cloud and/or aerosol simulations the cloud, cfrac and aerosol profiles input to
RTTOV are defined on atmospheric layers. However they must be supplied to the Profile object as
an array of nlevels elements: the final element is ignored.

The setGasUnits method takes an argument of type rttov::gasUnitType which is defined in
wrapper/rttov_common.h. The constants of this enumeration are listed in Appendix G. If
unspecified the default is ppmv over moist air, but a warning is printed if you do not set this
explicitly.

22

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

The setAngles, setS2m, setSkin, setSurfType, setSurfGeom and setDateTimes methods must all
be called for every Profile instance. Each of these methods sets a collection of related profile
variables: the RTTOV user guide provides more information on which variables are required for
particular types of simulations. If an argument to one of these subroutines corresponds to a variable
which is not relevant to your simulations you can set it to zero. The table at the end of section 6.7
lists the variables that must be specified in each array (the order of the variables is important).

The setSimpleCloud, setIceCloud and setZeeman methods do not need to be called unless you
require the corresponding variables to be specified in your simulations. If unspecified the Profile
object will set the values of the corresponding profile variables to zero.

If you are not using the RTTOV interpolator you do not need to specify the pressure levels.
Instantiate the Profile object with the same number of levels as the coefficient file is based on
(usually 54 or 101) and the pressure profile from the coefficient file will be used by default unless
you specify a different set of pressure levels using the setP method.

Once a Profile object has been populated with profile data it can be stored in a C++ vector of
Profile objects. For example:

std::vector <rttov::Profile> profiles;
profiles.push_back(myProfile);

This can be repeated for every profile to be simulated. Once the collection of Profile instances is
fully populated it is associated with the RttovSafe instance by calling the myRttov.setTheProfiles
method. This performs some checks on the profiles before RTTOV is called which helps to prevent
errors.

6.7. Profile data for an Rttov object (C++ and Python)

The Profiles class represents one or more RTTOV profile structures. The atmospheric profiles and
other variables are specified as a series of arrays. An instance of the Profiles class is then provided
to the Rttov instance. The methods (C++) and members (Python) of the Profiles class are given in
Appendix E.

A Profiles object is instantiated as follows, where nprofiles is the number of profiles and nlevels is
the number of levels in each profile.

In C++:

rttov::Profiles myProfiles(nprofiles, nlevels);

In Python:

myProfiles = pyrttov.Profiles(nprofiles, nlevels)

In C++ the data for each profile variable is provided to the Profiles instance as a pointer to an array
containing the data for every profile using the relevant method. For example, the setT method
assigns the temperature profiles to the Profiles instance. There are methods for setting profile data
for each trace gas and the pressure levels.

In Python numpy arrays are assigned directly to the member variables of the myProfiles object (e.g.
myProfiles.T = temperature_array for the temperature profiles). Profiles for each trace

23

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

gas and the pressure levels can be set in the same way.

For atmospheric profile variables like temperature and gas abundances you must create an array of
size [nprofiles][nlevels] and populate it with the atmospheric profile values for every profile.

When doing IR cloud and/or aerosol simulations the cloud, cfrac and aerosol profiles input to
RTTOV are defined on atmospheric layers. However they must be supplied to the Profiles object as
arrays of [nprofiles][nlevels] elements (as for temperature and gases): the final element of each
profile is ignored.

In C++ to supply the cloud and aerosol profiles you must use the setGasItem method which takes
the profile as input and an ID for the profile variable being set. This second argument is of type
rttov::itemIdType: this enumeration is defined in wrapper/rttov_common.h and a complete list of
the associated constants is given in Appendix G. (You can also set the gas profiles using this
method, but it is clearer to use the methods like setQ which are particular to each gas).

In Python there is no equivalent to setGasItem: the individual cloud and aerosol profile variables
can be assigned directly by name. For example, myProfiles.Cfrac = cfrac (cloud
fraction), myProfiles.Cirr = ciw (cloud ice water), myProfiles.Inso = aer_inso
(insoluble aerosol). See Appendix E.

The setGasUnits method takes an integer argument: see the RTTOV user guide for valid values. If
unspecified the default is ppmv over moist air.

In C++ the setAngles, setS2m, setSkin, setSurfType, setSurfGeom and setDateTimes methods
must all be called for each Profiles instance in C++. Each of these methods sets a collection of
related profile variables. The argument to each method is a two dimensional array (see Appendix E).
The first dimension is nprofiles, and the second dimension depends on the number of variables
being set by each method (see table below). The RTTOV user guide provides more information on
which variables are required for particular types of simulations: if an element of an array argument
to one of these subroutines corresponds to a variable which is not relevant to your simulations you
can set it to zero.

The setSimpleCloud, setIceCloud and setZeeman methods do not need to be called unless you
require the corresponding variables to be specified in your simulations. If unspecified the Profiles
object will set the values of the corresponding profile variables to zero.

In Python the same applies except that the equivalent member arrays (Angles, S2m, SimpleCloud,
etc) are assigned for each Profiles instance rather than via a method call.

If you are not using the RTTOV interpolator you do not need to specify the pressure levels.
Instantiate the Profiles object with the same number of levels as the coefficient file is based on
(usually 54 or 101) and the pressure profile from the coefficient file will be used by default unless
you specify an array containing different pressure levels using the setP method (C++) or assign
pressure levels to the P member (Python).

Once all the necessary profile data have been specified in the Profiles instance it can be associated
with the RttovSafe or Rttov instance. In C++ this is done using the myRttov.setProfiles method.
No checks are made on the the profile data before RTTOV is called so you must ensure that it
conforms to the requirements of RTTOV and the wrapper interface. In Python you can simply

24

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

assign the myProfiles object to the myRttov.Profiles member: in contrast to the C++ classes,
pyrttov does carry out checks on the profile (and other) data as you assign values.

In C++ once you have called RTTOV for the profiles it is up to you to deallocate the arrays which
you associated with the Profiles instance using the “set” methods: these are not deallocated by the
Profiles destructor. This is not an issue in Python as the garbage collection handles this
automatically.

The following table gives the dimensions and profile variable list which should be specified in each
input array. See the user guide for more information on which profile variables are used for each
type of simulation (e.g. MW, IR, solar-affected, scattering, etc) Unused variables can be set to zero.

Array Dimensions* Mandatory/
Optional

Variable list

DateTimes [nprofiles][6] Mandatory (year, month, day, hour, minute, second) per profile
(The month will be used for initialising the atlas(es) if you do not specify
a month in the atlas setup subroutine call(s); the full date will be used to
calculate the TOA solar irradiance for solar-affected simulations. The
time is not currently used by RTTOV so can be zero).

Angles [nprofiles][4] Mandatory (zenangle, azangle, sunzenangle, sunazangle) per profile

SurfGeom [nprofiles][3] Mandatory (latitude, longitude, elevation) per profile

SurfType [nprofiles][2] Mandatory (skin%surftype, skin%watertype) per profile

Skin [nprofiles][9] Mandatory (skin%t, skin%salinity, snow_frac, skin%foam_fraction, skin
%fastem(1:5)) per profile

S2m [nprofiles][6] Mandatory (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v, s2m%wfetc) per profile

SimpleCloud [nprofiles][2] Optional (ctp, cfraction) per profile

IceCloud [nprofiles][2] Optional (ish, idg) per profile

Zeeman [nprofiles][2] Optional (Be, cosbk) per profile

*For the C++ Profile class the arrays are specified for each profile separately so there is no
[nprofiles] dimension. For the C++ and Python Profiles classes the data are specified for all
profiles together in a single array.

6.8. Calling RTTOV

The RTTOV direct model is run by calling the myRttov.runDirect method. There are two
interfaces for this method: if called without arguments all channels that were loaded will be
simulated. Otherwise a list of channel numbers to simulate may be supplied.

The RTTOV K (Jacobian) model is run by calling the myRttov.runK method. As for the direct
model this can be called for all channels (no arguments) or for a subset of loaded channels (by
specifying the list of channel numbers). The input perturbation is set to 1 for brightness
temperatures and radiances in all channels (see the user guide for details about the K model).

25

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

You can specify a large number of profiles in an Rttov or RttovSafe instance. When RTTOV is
called on the profiles, the number of profiles passed into RTTOV per call is defined in the wrapper
option “nprofs_per_call” which is specified by the setNprofsPerCall method of the Options class
(C++) or the NprofsPerCall member of the Options class (Python). The total number of profiles is
divided into batches of this size and RTTOV is called repeatedly by the wrapper until all profiles
have been simulated. By default nprofs_per_call is 1, but it can be increased to improve
performance especially if RTTOV has been compiled with OpenMP and the nthreads wrapper
option is increased in order to make use of multiple threads.

6.9. Accessing RTTOV outputs

Once RTTOV has been called the output data can be accessed by calling various methods. Note that
this data remains available until RTTOV is called again for the same instrument (using the
runDirect or runK methods for example) at which point it is over-written with the new output.

The simulated radiances can be obtained by calling the myRttov.getRads method. Simulated
brightness temperatures (for channels with wavelengths above 3µm) and reflectances (for other
channels) can be obtained by calling the myRttov.getBtRefl method.

After calling the RTTOV K model the Jacobians can be obtained through the various methods
/members listed in Appendix C. For example the temperature Jacobians are obtained using the
myRttov.getTK method (C++) which returns the Jacobian for a given channel and profile or simply
by myRttov.TK (Python) which returns the array of Jacobians for all channels and profiles
(dimensions [nprofiles][nchannels][nlevels]).

In C++, to return the Jacobians for gas profiles and (if computed) for clouds and aerosols, the
myRttov.getItemK method is used. The first argument is of type rttov::itemIdType: this
enumeration is defined in wrapper/rttov_common.h and a complete list of the associated constants
is given in Appendix G. For example, to obtain the water vapour Jacobian for the first channel and
the first profile simulated use:

myRttov.getItemK(rttov::Q,0,0)

In Python there is also a getItemK method, but it may be easier to reference each Jacobian directly
as myRttov.CH4K (CH4 Jacobian), myRttov.CfracK (cloud fraction Jacobian), myRttov.CirrK
(ice cloud Jacobian), and so on.

Note that, similar to the input profile case, the cloud and aerosol profile Jacobians will be nlevels in
size with a zero in the final element (the first nlayers elements contain the Jacobian).

In C++ many of the methods which return RTTOV outputs take profile and channel indexes as
arguments: these are zero-counted values into the list of profiles and channels simulated. For
example, to return information for the first profile the profile index should be zero, and if you
simulated channels 1, 3 and 5 of an instrument, the indices for these channels in the output are 0, 1
and 2 respectively.

In contrast pyrttov provides access to the whole array of each output for all channels and profiles.

The additional profile variables which are active in the Jacobian model can be accessed via the
getS2mK, getSkinK, getSimpleCloudK methods (C++) or the S2mK, SkinK and SimpleCloudK

26

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

members (Python). The order of the variables is the same as for the corresponding input arrays.

It is also possible to access the full contents of the RTTOV transmission, radiance and radiance2
structures. You must set the relevant option flag (store_trans, store_rad, store_rad2) before calling
RTTOV otherwise calls to these methods (C++) or accesses to the members (Python) will throw an
exception. In C++ each method returns a vector of values for a given profile index or for given
profile and channel indices while in Python you can access the full output array for all
channels/profiles. The relevant methods and members are listed in Appendix C.

6.10. Deallocating memory

The deallocation of memory associated with an instrument represented by an RttovSafe or Rttov
object is taken care of automatically when an object is destroyed.

All instances of these classes are completely independent except, as noted above, in respect of the
emissivity and BRDF atlases. It is not necessary to call the atlas deallocation methods as these are
executed by the RttovSafe and Rttov destructors, but as described above you must be aware that
the atlases will be deallocated if you destroy the RttovSafe or Rttov instance that was used to
initialise them.

7. Limitations of the wrapper
The wrapper currently has the following limitations:

• Up to 100 instruments may be initialised simultaneously*.

• RTTOV-SCATT unavailable.

• PC-RTTOV unavailable.

• TL/AD unavailable.

• Cannot pass aerosol/cloud optical parameters explicitly for IR scattering simulations
(“method 2”).

*For the object-oriented interface this implies a maximum of 100 concurrently instantiated Rttov or RttovSafe objects.
If this limitation is problematic you can modify the value of the parameter max_ninst in
src/wrapper/rttov_wrapper_handle.F90 to a larger number and recompile RTTOV to increase this limit. When using
pyrttov, this limit is also enforced by the pyrttov.Rttov's constructor. Consequently, if you raise this limit in the Fortran
code, you will also need to update the limit in the pyrttov/__init__.py file (in the _shared_classvar dictionary of the
Rttov class).

27

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix A: Gas IDs
Gas ID list: these are defined in src/wrapper/rttov_wrapper_handle.F90. See user guide Annex O for
more information about the profile variables and sections 8.5 and 8.6 for information about the
cloud and aerosol types.

ID Variable nlevels or nlayers*

1 Water vapour (q) nlevels

2 Ozone (o3) nlevels

3 CO2 nlevels

4 N2O nlevels

5 CO nlevels

6 CH4 nlevels

15 Cloud liquid water (clw) nlevels

20 Cloud fraction (cfrac) nlayers

21-25 Cloud liquid water types 1-5 (STCO, STMA, CUCC, CUCP, CUMA) nlayers

30 Ice cloud (CIRR) nlayers

31 Ice cloud effective diameter (icede) nlayers

41-53 Aerosol particle types 1-13 nlayers

*As noted above cloud and aerosol profiles are specified on layers so only the first nlayers values are used, the final
element of the array (nlevels) is ignored.

28

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix B: RTTOV wrapper subroutines
The following table lists the main subroutines in the RTTOV wrapper:

Subroutine Description

rttov_load_inst Specify initial RTTOV and wrapper options and load an instrument

rttov_set_options Modify one or more RTTOV and wrapper options

rttov_print_options Print the current RTTOV and wrapper options

rttov_call_direct Call the RTTOV direct model

rttov_call_k Call the RTTOV K model

rttov_drop_inst Deallocate the data for a specified instrument

rttov_drop_all Deallocate all instrument and atlas data

rttov_brdf_atlas_setup
rttov_ir_emis_atlas_setup
rttov_mw_emis_atlas_setup

Initialise the BRDF and emissivity atlases

rttov_brdf_atlas_dealloc
rttov_ir_emis_atlas_dealloc
rttov_mw_emis_atlas_dealloc

Deallocate the BRDF and emissivity atlases

The main subroutine calls to the direct and K model return the simulated radiances and brightness
temperatures (or reflectances) as described above. RTTOV provides a number of other radiance and
transmittance outputs in the transmission, radiance and secondary radiance structures. Each member
of these structures can be made available (provided it was calculated by the simulation) by setting
the store_trans, store_rad and/or store_rad2 wrapper options. They can be accessed via one of the
subroutine calls listed below. Note that these outputs are stored independently for each instrument,
but for any given instrument they are overwritten by any subsequent direct or K model calls for that
instrument.

Each subroutine interface is very similar: they all return the usual error status and take the
instrument ID and an array argument of the size given below. For C/C++ calls the array dimensions
must also be passed, but these are implicit for Python calls as described above.

Array sizes of nchanprof refer to nchannels * nprofiles (i.e. the total number of channels being
simulated). From C and C++ you can pass an array of shape (nprofiles, nchannels) instead of one of
shape (nchanprof) if this is more convenient. From Python you can pass an array of shape
(nchannels, nprofiles). See the example code. An example call from Python is:

> rad_clear = numpy.empty((nchannels,nprofiles), order='F', dtype=numpy.float64)
> err = rttov_get_rad_clear(inst_id, rad_clear)

The following tables list the members of the RTTOV radiance, radiance2 and transmission
structures returned: see Annex O in the user guide for more information about these outputs.

29

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Radiance structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad_clear radiance%clear(nchanprof)

rttov_get_rad_total radiance%total(nchanprof) – this is returned in the rads argument to the
rttov_call_* subroutines

rttov_get_rad_cloudy radiance%cloudy(nchanprof)

rttov_get_bt_clear radiance%bt_clear(nchanprof)

rttov_get_bt radiance%bt(nchanprof) – this is returned for IR/MW channels in the btrefl
argument to the rttov_call_* subroutines

rttov_get_refl_clear radiance%refl_clear(nchanprof)

rttov_get_refl radiance%refl(nchanprof) – this is returned for VIS/NIR channels in the btrefl
argument to the rttov_call_* subroutines

rttov_get_overcast radiance%overcast(nchanprof, nlayers)

Radiance2 structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad2_up radiance2%up(nchanprof, nlayers)

rttov_get_rad2_down radiance2%down(nchanprof, nlayers)

rttov_get_rad2_surf radiance2%surf(nchanprof, nlayers)

rttov_get_rad2_upclear radiance2%upclear(nchanprof)

rttov_get_rad2_dnclear radiance2%dnclear(nchanprof)

rttov_get_rad2_refldnclear radiance2%refldnclear(nchanprof)

Transmission structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_tau_total transmission%tau_total(nchanprof)

rttov_get_tau_levels transmission%tau_levels(nchanprof, nlevels)

rttov_get_tausun_total_path2 transmission%tausun_total_path2(nchanprof)

rttov_get_tausun_levels_path2 transmission%tausun_levels_path2(nchanprof, nlevels)

rttov_get_tausun_total_path1 transmission%tausun_total_path1(nchanprof)

rttov_get_tausun_levels_path1 transmission%tausun_levels_path1(nchanprof, nlevels)

30

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix C: RttovSafe and Rttov classes (C++ and Python)

C++ RttovSafe and Rttov classes

The majority of the methods used for calling RTTOV are the same for both the RttovSafe and
Rttov classes. The only one which differs is the method for associating profile data with the
RttovSafe or Rttov instance.

Constructors:

RttovSafe ()
RttovSafe class constructor method.

Rttov ()
Rttov class constructor method.

Associating profile data with an RttovSafe object:

void setTheProfiles (std::vector< rttov::Profile > &theProfiles)
Associate a vector of Profile objects with this RttovSafe object; carries out checks on profiles
before calling RTTOV to help prevent errors: all profiles must be have the same number of
levels with the same content (gases, clouds, aerosols) and have the same gas_units.

Associating profile data with an Rttov object:

void setProfiles (rttov::Profiles *profiles)
Associate a Profiles object with this Rttov object; this is fast, but does not carry out any checks
on profiles before calling RTTOV.

Methods common to RttovSafe and Rttov classes:

void setFileCoef (const string &fileCoef)
Set the coefficient filename.

void setFileSccld (const string &fileSccld)
Set the cloud coefficient filename.

void setFileScaer (const string &fileScaer)
Set the aerosol coefficient filename.

void setBrdfAtlasPath (const string &brdfAtlasPath)
Set the path for the BRDF atlas files.

void setEmisAtlasPath (const string &emisAtlasPath)
Set the path for the emissivity atlas files.

void loadInst ()
Load instrument with all channels.

31

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void loadInst (const vector< int > &channels)
Load instrument for a list of channels; the method setFileCoef() must have been called
previously.

bool isCoeffsLoaded () const
Return true if instrument is loaded.

int getNchannels () const
Return the number of loaded channels.

int getCoeffsNlevels ()
Return the number of levels of the coefficient file.

void updateOptions ()
Update RTTOV options for the currently loaded instrument.

void printOptions ()
Print RTTOV options for the currently loaded instrument.

bool brdfAtlasSetup (int month, bool single_inst=false, int version=-1)
Initialise the BRDF atlas (all options available)

bool irEmisAtlasSetup (int month, bool ang_corr=false, bool single_inst=false, int version=-1)
Initialise the IR emissivity atlas (all options available)

bool mwEmisAtlasSetup (int month, int version=-1)
Initialise the MW emissivity atlas.

bool brdfAtlasSetup ()
Initialise the BRDF atlas for the month of the first profile.

bool irEmisAtlasSetup ()
Initialise the IR emissivity atlas for the month of the first profile.

bool mwEmisAtlasSetup ()
Initialise the MW emissivity atlas for the month of the first profile.

void deallocBrdfAtlas ()
Deallocate memory for the BRDF atlas.

void deallocIrEmisAtlas ()
Deallocate memory for the IR emissivity atlas.

void deallocMwEmisAtlas ()
Deallocate memory for the MW emissivity atlas.

void setSurfEmisRefl (double *surfemisrefl)
Set pointer to array containing input/output surface emissivity and reflectance values; this must
be previously allocated a double array of dimensions [2][nprofiles][nchannels]; this is used to
pass emissivity/reflectance values into RTTOV; if this is not called the RttovSafe object will
allocate an array containing the values used by RTTOV which can be accessed by
getSurfEmisRefl.

void printGases ()
Print gases array contents on standard output.

32

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void runDirect ()
Run the RTTOV direct model for all channels.

void runDirect (const vector< int > &channels)
Run the RTTOV direct model for a list of channels.

void runK ()
Run the RTTOV K model for all channels.

void runK (const vector< int > &channels)
Run the RTTOV K model for a list of channels.

std::vector< double > getBtRefl (const int profile)
Return vector of brightness temperatures/reflectances computed by the previous run for the
given profile number.

std::vector< double > getRads (const int profile)
Return a vector of radiances computed by the previous run for the given profile number.

const double * getSurfEmisRefl () const
Return a pointer to an array of dimensions [2][nprofiles][nchannels] containing output values
of surface emissivity and reflectance; this array can be initialised by the user and set by calling
the setSurfEmisRefl method; alternatively if the emissivity/reflectance array is allocated by the
RttovSafe object it is deleted at the next run or when the RttovSafe instance is destroyed.

std::vector< double > getPK (int profile, int channel)
Return the computed pressure Jacobians for a given profile and channel.

std::vector< double > getTK (int profile, int channel)
Return computed temperature Jacobians for a given profile and channel.

std::vector< double > getSkinK (int profile, int channel)
Return computed skin variable Jacobians for a given profile and channel.

std::vector< double > getS2mK (int profile, int channel)
Return computed 2m variable Jacobian for a given profile and channel.

std::vector< double > getSimpleCloudK (int profile, int channel)
Return computed simple cloud variable Jacobians for a given profile and channel.

std::vector< double > getItemK (rttov::itemIdType, int profile, int channel)
Return computed gas, cloud and aerosol Jacobian values for a given profile and channel.

std::vector< double > getSurfEmisK (int profile)
Return computed surface emissivity Jacobians for a given profile.

std::vector< double > getSurfReflK (int profile)
Return computed surface reflectance Jacobians for a given profile.

std::vector< double > getTauTotal (int profile)
Return RTTOV transmission tau_total output array of size [nchannels] for given profile,
requires store_trans true.

std::vector< double > getTauLevels (int profile, int channel)
Return RTTOV transmission tau_levels output array of size [nlevels] for given profile and
channel, requires store_trans true.

33

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

std::vector< double > getTauSunTotalPath1 (int profile)
Return RTTOV transmission tausun_total_path1 output array of size [nchannels] for given
profile, requires store_trans true.

std::vector< double > getTauSunLevelsPath1 (int profile, int channel)
Return RTTOV transmission tausun_levels_path1 output array of size [nlevels] for given profile
and channel, requires store_trans true.

std::vector< double > getTauSunTotalPath2 (int profile)
Return RTTOV transmission tausun_total_path2 output array of size [nchannels] for given
profile, requires store_trans true.

std::vector< double > getTauSunLevelsPath2 (int profile, int channel)
Return RTTOV transmission tausun_levels_path2 output array of size [nlevels] for given profile
and channel, requires store_trans true.

std::vector< double > getRadClear (int profile)
Return RTTOV radiance clear output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getRadTotal (int profile)
Return RTTOV radiance total output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getBtClear (int profile)
Return RTTOV radiance bt_clear output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getBt (int profile)
Return RTTOV radiance bt output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getReflClear (int profile)
Return RTTOV radiance refl_clear output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getRefl (int profile)
Return RTTOV radiance refl output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getRadCloudy (int profile)
Return RTTOV radiance cloudy output array of size [nchannels] for given profile, requires
store_rad true.

std::vector< double > getOvercast (int profile, int channel)
Return RTTOV radiance overcast output array of size [nlayers] for given profile and channel,
requires store_rad true.

std::vector< double > getRad2UpClear (int profile)
Return RTTOV radiance2 upclear output array of size [nchannels] for given profile, requires
store_rad2 true.

34

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

std::vector< double > getRad2DnClear (int profile)
Return RTTOV radiance2 dnclear output array of size [nchannels] for given profile, requires
store_rad2 true.

std::vector< double > getRad2ReflDnClear (int profile)
Return RTTOV radiance2 refldnclear output array of size [nchannels] for given profile, requires
store_rad2 true.

std::vector< double > getRad2Up (int profile, int channel)
Return RTTOV radiance2 up output array of size [nlayers] for given profile and channel,
requires store_rad2 true.

std::vector< double > getRad2Down (int profile, int channel)
Return RTTOV radiance2 down output array of size [nlayers] for given profile and channel,
requires store_rad2 true.

std::vector< double > getRad2Surf (int profile, int channel)
Return RTTOV radiance2 surf output array of size [nlayers] for given profile and channel,
requires store_rad2 true.

Python Rttov class

Methods:

Rttov ()
Rttov class constructor method.

loadInst (channels=None)
Load instrument for a list of channels if array of channel numbers is supplied or for all
channels if channels argument is omitted; the FileCoef member must have been set previously.
Throws an exception if an error is encountered.

updateOptions ()
Update RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

printOptions ()
Print RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

bool brdfAtlasSetup (month=None, single_inst=false, version=-1)
Initialise the BRDF atlas. Returns true if atlas was successfully initialised.

bool irEmisAtlasSetup (month=None, ang_corr=false, single_inst=false, version=-1)
Initialise the IR emissivity atlas. Returns true if atlas was successfully initialised.

bool mwEmisAtlasSetup (month=None, version=-1)
Initialise the MW emissivity atlas. Returns true if atlas was successfully initialised.

deallocBrdfAtlas ()
Deallocate memory for the BRDF atlas.

deallocIrEmisAtlas ()
Deallocate memory for the IR emissivity atlas.

35

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

deallocMwEmisAtlas ()
Deallocate memory for the MW emissivity atlas.

runDirect (channels=None)
Run the RTTOV direct model for the supplied list of channels or for all loaded channels if the
channels argument is omitted. Throws an exception if an error is encountered.

runK (channels=None)
Run the RTTOV K model for the supplied list of channels or for all loaded channels if the
channels argument is omitted. Throws an exception if an error is encountered.

getItemK (gas_id)
Return computed gas, cloud and aerosol Jacobian values. See Appendix A for the gas IDs. If the
requested Jacobian was not calculated this returns None, otherwise the result will be an array
with dimensions [nprofiles][nchannels][nlevels]. It is also possible to access each gas, cloud or
aerosol variable's Jacobians directly (see members below).

Members:

Options Options
The Options instance associated with this Rttov object. You should set the options associated
with this instrument by assigning to the members of this Options instance.

Profiles Profiles
The Profiles instance associated with this Rttov object; you should declare an instance of
Profiles, populate it with profile data and assign it to this member.

string FileCoef
Set the coefficient filename.

string FileSccld
Set the cloud coefficient filename.

string FileScaer
Set the aerosol coefficient filename.

string BrdfAtlasPath
Set the path for the BRDF atlas files.

string EmisAtlasPath
Set the path for the emissivity atlas files.

bool CoeffsLoaded
True if instrument is loaded (read-only).

int Nchannels
The number of loaded channels (read-only).

int CoeffsNlevels
The number of levels of the coefficient file (read-only).

float array SurfEmisRefl
Array containing input/output surface emissivity and reflectance values of dimensions [2]
[nprofiles][nchannels]; this is used to pass emissivity/reflectance values into RTTOV; if this is
not specified before calling RTTOV the Rttov object will create one with all elements set

36

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

negative (i.e. with calcemis and calcrefl set to true) which will contain the values used by
RTTOV after it has been called.

float array BtRefl
Brightness temperatures/reflectances computed by the previous run, dimensions [nprofiles]
[nchannels].

float array Rads
Radiances computed by the previous run, dimensions [nprofiles][nchannels].

float array PK
Computed pressure Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array TK
Computed temperature Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array QK
Computed q Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array O3K
Computed o3 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CO2K
Computed co2 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array COK
Computed co Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array N2OK
Computed n2o Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CH4K
Computed ch4 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CLWK
Computed clw Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CfracK
Computed cfrac Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array StcoK
Computed stco (cloud type 1) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array StmaK
Computed stma (cloud type 2) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CuccK
Computed cucc (cloud type 3) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CucpK
Computed cucp (cloud type 4) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CumaK
Computed cuma (cloud type 5) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CirrK
Computed cirr (cloud type 6) Jacobians, dimensions [nprofiles][nchannels][nlevels].

37

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

float array IcedeK
Computed icede Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array InsoK
Computed inso (aerosol type 1) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array WasoK
Computed waso (aerosol type 2) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SootK
Computed soot (aerosol type 3) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SsamK
Computed ssam (aerosol type 4) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SscmK
Computed sscm (aerosol type 5) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MinmK
Computed minm (aerosol type 6) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MiamK
Computed miam (aerosol type 7) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MicmK
Computed micm (aerosol type 8) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MitrK
Computed mitr (aerosol type 9) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SusoK
Computed suso (aerosol type 10) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array VolaK
Computed vola (aerosol type 11) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array VapoK
Computed vapo (aerosol type 12) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array AsduK
Computed asdu (aerosol type 13) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SkinK
Computed skin variable Jacobians, dimensions [nprofiles][nchannels][9].

float array S2mK
Computed 2m variable Jacobian, dimensions [nprofiles][nchannels][6].

float array SimpleCloudK
Computed simple cloud variable Jacobians, dimensions [nprofiles][nchannels][2].

float array SurfEmisK
Computed surface emissivity Jacobians, dimensions [nprofiles][nchannels].

float array SurfReflK
Computed surface reflectance Jacobians, dimensions [nprofiles][nchannels].

float array TauTotal
RTTOV transmission tau_total output array, dimensions [nprofiles][nchannels], requires

38

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

store_trans true.

float array TauLevels
RTTOV transmission tau_levels output array, dimensions [nprofiles][nchannels][nlevels],
requires store_trans true.

float array TauSunTotalPath1
RTTOV transmission tausun_total_path1 output array, dimensions [nprofiles][nchannels],
requires store_trans true.

float array TauSunLevelsPath1
RTTOV transmission tausun_levels_path1 output array dimensions [nprofiles][nchannels]
[nlevels], requires store_trans true.

float array TauSunTotalPath2
RTTOV transmission tausun_total_path2 output array, dimensions [nprofiles][nchannels],
requires store_trans true.

float array TauSunLevelsPath2
RTTOV transmission tausun_levels_path2 output array dimensions [nprofiles][nchannels]
[nlevels], requires store_trans true.

float array RadClear
RTTOV radiance clear output array, dimensions [nprofiles][nchannels], requires store_rad
true.

float array RadTotal
RTTOV radiance total output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array BtClear
RTTOV radiance bt_clear output array, dimensions [nprofiles][nchannels], requires store_rad
true.

float array Bt
RTTOV radiance bt output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array ReflClear
RTTOV radiance refl_clear output array, dimensions [nprofiles][nchannels], requires store_rad
true.

float array Refl
RTTOV radiance refl output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array RadCloudy
RTTOV radiance cloudy output array, dimensions [nprofiles][nchannels], requires store_rad
true.

float array Overcast
RTTOV radiance overcast output array, dimensions [nprofiles][nchannels][nlayers], requires
store_rad true.

float array Rad2UpClear
RTTOV radiance2 upclear output array, dimensions [nprofiles][nchannels], requires
store_rad2 true.

39

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

float array Rad2DnClear
RTTOV radiance2 dnclear output array, dimensions [nprofiles][nchannels], requires
store_rad2 true.

float array Rad2ReflDnClear
RTTOV radiance2 refldnclear output array, dimensions [nprofiles][nchannels], requires
store_rad2 true.

float array Rad2Up
RTTOV radiance2 up output array, dimensions [nprofiles][nchannels][nlayers], requires
store_rad2 true.

float array Rad2Down
RTTOV radiance2 down output array, dimensions [nprofiles][nchannels][nlayers], requires
store_rad2 true.

float array Rad2Surf
RTTOV radiance2 surf output array, dimensions [nprofiles][nchannels][nlayers], requires
store_rad2 true.

40

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix D: Profile class (used with RttovSafe objects; C++
only)
Typically a vector of instances of this class is created, the profile data are assigned to each instance
and then the vector is associated with one or more RttovSafe instances.

Profile (int nlevels)
Constructor method.

void setGasUnits (rttov::gasUnitType gasUnits)
Set the gas_units.

void setP (const std::vector< double > &p)
Set the p (pressure) vector.

void setT (const std::vector< double > &t)
Set the temperatures vector.

void setQ (const std::vector< double > &q)
Set item q for the profile (vector size must equal nlevels)

void setO3 (const std::vector< double > &o3)
Set item o3 for the profile (vector size must equal nlevels)

void setCO2 (const std::vector< double > &co2)
Set item co2 for the profile (vector size must equal nlevels)

void setN2O (const std::vector< double > &n2o)
Set item n2o for the profile (vector size must equal nlevels)

void setCO (const std::vector< double > &co)
Set item co for the profile (vector size must equal nlevels)

void setCH4 (const std::vector< double > &ch4)
Set item ch4 for the profile (vector size must equal nlevels)

void setCLW (const std::vector< double > &clw)
Set item clw for the profile (vector size must equal nlevels)

void setCfrac (const std::vector< double > &cfrac)
Set item cfrac for the profile (vector size must equal nlevels)

void setStco (const std::vector< double > &stco)
Set item stco for the profile (vector size must equal nlevels)

void setStma (const std::vector< double > &stma)
Set item stma for the profile (vector size must equal nlevels)

void setCucc (const std::vector< double > &cucc)
Set item cucc for the profile (vector size must equal nlevels)

void setCucp (const std::vector< double > &cucp)
Set item cucp for the profile (vector size must equal nlevels)

void setCuma (const std::vector< double > &cuma)
Set item cuma for the profile (vector size must equal nlevels)

41

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void setCirr (const std::vector< double > &cirr)
Set item cirr for the profile (vector size must equal nlevels)

void setIcede (const std::vector< double > &icede)
Set item icede for the profile (vector size must equal nlevels)

void setInso (const std::vector< double > &inso)
Set item inso for the profile (vector size must equal nlevels)

void setWaso (const std::vector< double > &waso)
Set item waso for the profile (vector size must equal nlevels)

void setSoot (const std::vector< double > &soot)
Set item soot for the profile (vector size must equal nlevels)

void setSsam (const std::vector< double > &ssam)
Set item ssam for the profile (vector size must equal nlevels)

void setSscm (const std::vector< double > &sscm)
Set item sscm for the profile (vector size must equal nlevels)

void setMinm (const std::vector< double > &minm)
Set item minm for the profile (vector size must equal nlevels)

void setMiam (const std::vector< double > &miam)
Set item miam for the profile (vector size must equal nlevels)

void setMicm (const std::vector< double > &micm)
Set item micm for the profile (vector size must equal nlevels)

void setMitr (const std::vector< double > &mitr)
Set item mitr for the profile (vector size must equal nlevels)

void setSuso (const std::vector< double > &suso)
Set item suso for the profile (vector size must equal nlevels)

void setVola (const std::vector< double > &vola)
Set item vola for the profile (vector size must equal nlevels)

void setVapo (const std::vector< double > &vapo)
Set item vapo for the profile (vector size must equal nlevels)

void setAsdu (const std::vector< double > &asdu)
Set item asdu for the profile (vector size must equal nlevels)

void setAngles (const double satzen, const double satazi, const double sunzen, const double sunazi)
Set satellite an solar angles.

void setS2m (const double p_2m, const double t_2m, const double q_2m, const double u_10m, const double v_10m,
const double wind_fetch)
Set surface 2m and 10m parameters.

void setSkin (const double t, const double salinity, const double snow_fraction, const double foam_fraction, const
double fastem_coef_1, const double fastem_coef_2, const double fastem_coef_3, const double fastem_coef_4,
const double fastem_coef_5)
Set skin parameters.

42

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void setSurfType (const int surftype, const int watertype)
Set surface type parameters.

void setSurfGeom (const double lat, const double lon, const double elevation)
Set surface geometry parameters.

void setDateTimes (const int yy, const int mm, const int dd, const int hh, const int mn, const int ss)
Set date and time.

void setSimpleCloud (const double ctp, const double cfraction)
Set simple cloud parameters.

void setIceCloud (const int ish, const int idg)
Set ice cloud parameters.

void setZeeman (const double Be, const double cosbk)
Set zeeman parameters.

43

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix E: Profiles class (used with Rttov objects; C++ and
Python)

C++ Profiles class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Profiles (int nbprofiles, const int nblevels)
Constructor method for individual gas specification.

void setGasUnits (int gasUnits)
Set the gas_units.

void setP (double *p)
Set the pointer to the p array of size [nprofiles][nlevels].

void setT (double *t)
Set the pointer to the t array of size [nprofiles][nlevels].

void setQ (double *q)
Set the pointer to the q array of size [nprofiles][nlevels].

void setO3 (double *o3)
Set the pointer to the o3 array of size [nprofiles][nlevels].

void setCO2 (double *co2)
Set the pointer to the co2 array of size [nprofiles][nlevels].

void setCO (double *co)
Set the pointer to the co array of size [nprofiles][nlevels].

void setN2O (double *n2o)
Set the pointer to the n2o array of size [nprofiles][nlevels].

void setCH4 (double *ch4)
Set the pointer to the ch4 array of size [nprofiles][nlevels].

void setCLW (double *clw)
Set the pointer to the clw array of size [nprofiles][nlevels].

void setAngles (double *angles)
Set the pointer to the angles array of size [nprofiles][4] containing satzen, satazi, sunzen,
sunazi for each profile.

void setS2m (double *s2m)
Set the pointer to the s2m array of size [nprofiles][6] containing 2m p, 2m t, 2m q, 10m wind u,
v, wind fetch for each profile.

void setSkin (double *skin)
Set the pointer to the skin array of size [nprofiles][9] containing skin T, salinity, snow_fraction,
foam_fraction, fastem_coefs(1:5) for each profile.

44

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void setSurfType (int *surftype)
Set the pointer to the surftype array of size [nprofiles][2] containing surftype, watertype for
each profile.

void setSurfGeom (double *surfgeom)
Set the pointer to the surfgeom array of size [nprofiles][3] containing latitude, longitude,
elevation for each profile.

void setDateTimes (int *datetimes)
Set the pointer to the datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss
for each profile.

void setSimpleCloud (double *simplecloud)
Set the pointer to the simplecloud array of size [nprofiles][2] containing ctp, cfraction for each
profile.

void setIceCloud (int *icecloud)
Set the pointer to the icecloud array of size [nprofiles][2] containing ish, idg for each profile.

void setZeeman (double *zeeman)
Set the pointer to the zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

void setGasItem (double *gasItem, rttov::itemIdType item_id)
Set a gas, cloud or aerosol profile variable; item likes clouds, cfrac or aerosols must have the
same dimensions as temperature or water vapour [nprofiles][nlevels].

Python Profiles class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Methods:

Profiles (nprofiles, nlevels)
Constructor method.

Members:
int GasUnits

The gas_units.

float array P
The p array of size [nprofiles][nlevels].

float array T
The t array of size [nprofiles][nlevels].

float array Q
The q array of size [nprofiles][nlevels].

float array O3
The o3 array of size [nprofiles][nlevels].

float array CO2
The co2 array of size [nprofiles][nlevels].

45

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

float array CO
The co array of size [nprofiles][nlevels].

float array N2O
The n2o array of size [nprofiles][nlevels].

float array CH4
The ch4 array of size [nprofiles][nlevels].

float array CLW
The clw array of size [nprofiles][nlevels].

float array Angles
The angles array of size [nprofiles][4] containing satzen, satazi, sunzen, sunazi for each profile.

float array S2m
The s2m array of size [nprofiles][6] containing 2m p, 2m t, 2m q, 10m wind u, v, wind fetch for
each profile.

float array Skin
The skin array of size [nprofiles][9] containing skin T, salinity, snow_fraction, foam_fraction,
fastem_coefs(1:5) for each profile.

int array SurfType
The surftype array of size [nprofiles][2] containing surftype, watertype for each profile.

float array SurfGeom
The surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for each
profile.

int array DateTimes
The datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss for each profile.

float array SimpleCloud
The simplecloud array of size [nprofiles][2] containing ctp, cfraction for each profile.

int array IceCloud
The icecloud array of size [nprofiles][2] containing ish, idg for each profile.

float array Zeeman
The zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

float array Cfrac
The cfrac array of size [nprofiles][nlevels].

float array Stco
The stco (cloud type 1) array of size [nprofiles][nlevels].

float array Stma
The stma (cloud type 2) array of size [nprofiles][nlevels].

float array Cucc
The cucc (cloud type 3) array of size [nprofiles][nlevels].

float array Cucp
The cucp (cloud type 4) array of size [nprofiles][nlevels].

46

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

float array Cuma
The cuma (cloud type 5) array of size [nprofiles][nlevels].

float array Cirr
The cirr (cloud type 6) array of size [nprofiles][nlevels].

float array Icede
The icede array of size [nprofiles][nlevels].

float array Inso
The inso (aerosol type 1) array of size [nprofiles][nlevels].

float array Waso
The waso (aerosol type 2) array of size [nprofiles][nlevels].

float array Soot
The soot (aerosol type 3) array of size [nprofiles][nlevels].

float array Ssam
The ssam (aerosol type 4) array of size [nprofiles][nlevels].

float array Sscm
The sscm (aerosol type 5) array of size [nprofiles][nlevels].

float array Minm
The minm (aerosol type 6) array of size [nprofiles][nlevels].

float array Miam
The miam (aerosol type 7) array of size [nprofiles][nlevels].

float array Micm
The micm (aerosol type 8) array of size [nprofiles][nlevels].

float array Mitr
The mitr (aerosol type 9) array of size [nprofiles][nlevels].

float array Suso
The suso (aerosol type 10) array of size [nprofiles][nlevels].

float array Vola
The vola (aerosol type 11) array of size [nprofiles][nlevels].

float array Vapo
The vapo (aerosol type 12) array of size [nprofiles][nlevels].

float array Asdu
The asdu (aerosol type 13) array of size [nprofiles][nlevels].

47

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix F: Options class (C++ and Python)

C++ Options class

The methods listed below are used to set the RTTOV and wrapper options. Methods also exist to
query the options: see wrapper/Options.h. The Rttov and RttovSafe objects have options members
so there is usually no need to create instances of this class manually.

Options ()
Constructor method.

void setApplyRegLimits (bool applyRegLimts)
Set the opts%config%apply_reg_limits option.

void setDoCheckinput (bool doCheckinput)
Set the opts%config%do_checkinput option.

void setVerbose (bool verbose)
Set the opts%config%verbose option.

void setAddInterp (bool addinterp)
Set the opts%interpolation%addinterp option.

void setInterpMode (int interpMode)
Set the opts%interpolation%interp_mode option.

void setRegLimitExtrap (bool regLimitExtrap)
Set the opts%interpolation%reg_limit_extrap option.

void setSpacetop (bool spacetop)
Set the opts%interpolation%spacetop option.

void setLgradp (bool lgradp)
Set the opts%interpolation%lgradp option.

void setDoLambertian (bool doLambertian)
Set the opts%rt_all%do_lambertian option.

void setUseQ2m (bool useQ2m)
Set the opts%rt_all%use_q2m option.

void setSwitchrad (bool switchrad)
Set the opts%rt_all%switchrad option.

void setAddRefrac (bool addRefrac)
Set the opts%rt_all%addrefrac option.

void setCLWData (bool clwData)
Set the opts%rt_mw%clw_data option.

void setFastemVersion (int fastemVersion)
Set the opts%rt_mw%fastem_version option.

void setSupplyFoamFraction (bool supplyFoamFraction)
Set the opts%rt_mw%supply_foam_fraction option.

48

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

void setOzoneData (bool ozoneData)
Set the opts%rt_ir%ozone_data option.

void setCO2Data (bool co2Data)
Set the opts%rt_ir%co2_data option.

void setCH4Data (bool ch4Data)
Set the opts%rt_ir%ch4_data option.

void setCOData (bool coData)
Set the opts%rt_ir%co_data option.

void setN2OData (bool n2oData)
Set the opts%rt_ir%n2o_data option.

void setAddSolar (bool addsolarl)
Set the opts%rt_ir%addsolar option.

void setDoNlteCorrection (bool doNlteCorrection)
Set the opts%rt_ir%do_nlte_correction option.

void setAddAerosl (bool addaerosl)
Set the opts%rt_ir%addaerosl option.

void setAddClouds (bool addclouds)
Set the opts%rt_ir%addclouds option.

void setCldstrSimple (bool cldstrCimple)
Set the opts%rt_ir%cldstr_simple option.

void setCldstrThreshold (double cldstrThreshold)
Set the opts%rt_ir%cldstr_threshold option.

void setNthreads (int nthreads)
Set the number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

void setNprofsPerCall (int nprofsPerCall)
Set the number of profiles passed into rttov_direct or rttov_k per call.

void setVerboseWrapper (bool verboseWrapper)
Set the verbose_wrapper option.

void setCheckOpts (bool checkOpts)
Set the check_opts option.

void setStoreRad (bool storeRad)
Set the store_rad wrapper option.

void setStoreRad2 (bool storeRad2)
Set the store_rad2 wrapper option.

void setStoreTrans (bool storeTrans)
Set the store_trans wrapper option.

49

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Python Options class

The members below correspond directly to the RTTOV and wrapper options and are referenced
directly. The Rttov class has an Options member so there is usually no need to create instances of
this class manually.

Methods:

Options ()
Constructor method.

Members:

bool ApplyRegLimits
The opts%config%apply_reg_limits option.

bool DoCheckinput
The opts%config%do_checkinput option.

bool Verbose
The opts%config%verbose option.

bool AddInterp
The opts%interpolation%addinterp option.

int InterpMode
The opts%interpolation%interp_mode option.

bool RegLimitExtrap
The opts%interpolation%reg_limit_extrap option.

bool Spacetop
The opts%interpolation%spacetop option.

bool Lgradp
The opts%interpolation%lgradp option.

bool DoLambertian
The opts%rt_all%do_lambertian option.

bool UseQ2m
The opts%rt_all%use_q2m option.

bool Switchrad
The opts%rt_all%switchrad option.

bool AddRefrac
The opts%rt_all%addrefrac option.

bool CLWData
The opts%rt_mw%clw_data option.

int FastemVersion
The opts%rt_mw%fastem_version option.

50

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

bool SupplyFoamFraction
The opts%rt_mw%supply_foam_fraction option.

bool OzoneData
The opts%rt_ir%ozone_data option.

bool CO2Data
The opts%rt_ir%co2_data option.

bool CH4Data
The opts%rt_ir%ch4_data option.

bool COData
The opts%rt_ir%co_data option.

bool N2OData
The opts%rt_ir%n2o_data option.

bool AddSolar
The opts%rt_ir%addsolar option.

bool DoNlteCorrection
The opts%rt_ir%do_nlte_correction option.

bool AddAerosl
The opts%rt_ir%addaerosl option.

bool AddClouds
The opts%rt_ir%addclouds option.

bool CldstrSimple
The opts%rt_ir%cldstr_simple option.

float CldstrThreshold
The opts%rt_ir%cldstr_threshold option.

int Nthreads
The number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

int NprofsPerCall
The number of profiles passed into rttov_direct or rttov_k per call.

bool VerboseWrapper
The verbose_wrapper option.

bool CheckOpts
The check_opts option.

bool StoreRad
The store_rad wrapper option.

bool StoreRad2
The store_rad2 wrapper option.

bool StoreTrans
The store_trans wrapper option.

51

Python/C/C++ wrapper
for RTTOV v11.3

Doc ID : NWPSAF-MF-UD-035
Version : 1.1
Date : 2016 01 27

Appendix G: Enumeration types (C++)
The enumerations are defined in wrapper/rttov_common.h.

The following table lists the constants of the enumeration rttov::gasUnitType used to specify the
profile gas_units variable in the setGasUnits method of the Profile class.

Enumeration constants Description

unknown Default initialisation, ppmv over moist air will be used

ppmv_dry Gas units of ppmv over dry air

compatibility_mode RTTOV v11.2 compatibility mode

kg_per_kg Gas units of kg/kg over moist air

ppmv_wet Gas units of ppmv over moist air

The following table lists the constants of the enumeration rttov::itemIdType used for setting gas,
cloud and aerosol profiles in the setGasItem method of the Profiles class and to obtain the
Jacobians for gases, aerosol and cloud profiles using the getItemK method of the Rttov and
RttovSafe classes after running the RTTOV K model.

Enumeration constants Description

Q, O3, CO2, N2O, CO, CH4 RTTOV variable gases

CLW Cloud liquid water (for non-scattering MW simulations)

CFRAC Cloud fraction for IR cloud scattering simulations

STCO, STMA, CUCC, CUCP, CUMA The 5 cloud liquid water particle types for IR cloud scattering simulations.

CIRR The ice cloud particle type for IR cloud scattering simulations.

ICEDE The ice particle effective diameter input for IR cloud scattering simulations.

INSO, WASO, SOOT, SSAM, SSCM,
MINM, MIAM, MICM, MITR, SUSO,
VOLA, VAPO, ASDU

The 13 aerosol particle types for IR aerosol scattering simulations.

--END--

52

	1. Introduction
	2. Compilation and example code
	3. General description of interface
	3.1. Initialising the wrapper
	3.2. Changing RTTOV options
	3.3. Using the emissivity and/or BRDF atlases
	3.4. Calling the RTTOV direct model
	3.5. Calling the RTTOV K model
	3.6. Deallocating memory

	4. Specific information for Python
	5. Specific information for C/C++
	6. RTTOV classes
	6.1. General method for calling RTTOV
	6.2. Setting RTTOV options
	6.3. Loading an instrument
	6.4. Specifying surface emissivities and reflectances
	6.5. Using the emissivity and BRDF atlases
	6.6. Profile data for an RttovSafe object (C++ only)
	6.7. Profile data for an Rttov object (C++ and Python)
	6.8. Calling RTTOV
	6.9. Accessing RTTOV outputs
	6.10. Deallocating memory

	7. Limitations of the wrapper
	Appendix A: Gas IDs
	Appendix B: RTTOV wrapper subroutines
	Appendix C: RttovSafe and Rttov classes (C++ and Python)
	Appendix D: Profile class (used with RttovSafe objects; C++ only)
	Appendix E: Profiles class (used with Rttov objects; C++ and Python)
	Appendix F: Options class (C++ and Python)
	Appendix G: Enumeration types (C++)

