

RTTOV v11 Performance Tests

David Rundle Met Office

This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 1 December, 2006, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo France.

Copyright 2013, EUMETSAT, All Rights Reserved.

Change record									
Version	Date	Date Author / changed by Remarks							
0.1	25/04/13	David Rundle	Original draft						
1.0	16/05/13	13 David Rundle Respond to DRI comments							

This document describes the tests performed to compare the performance of RTTOV v11 with that of RTTOV v10.2.

Tests were performed on IBM and Intel architectures. Calculations were performed for AMSU-A (all channels) and IASI (183 channels). Runs were carried out both with and without interpolation, for one profile at a time and for several profiles at a time (for AMSU-A only).

For AMSU-A, the FASTEM-5 surface emissivity model was used in both RTTOV v10.2 and v11. The ISEM emissivity model was used for IASI. The tests were set up identically for both versions with the same options being selected for each and the same 54 level coefficient files being used in both cases.

Tests 1-18 used a 54-level clear-sky profile and 54-level, version 7 predictor coefficient files or a 101-level, version 7 predictor coefficient file. Tests 19-21 used a 101-level input profile which included cloud and aerosol profiles, and 100/101-level version 9 predictor coefficient files. Tests 22-27 used a 101-level input profile, a 101-level, version 9 predictor coefficient file.

The following table lists the clear-sky tests:

NWP SAF

Test	Platform	Sensor	Coefs	nchannels	nprofiles	Interp?	Model
Number			pred/levels		per call		
1	noaa	amsua	v7, 54	15	1	N	direct
2	noaa	amsua	v7, 54	15	10	N	direct
3	noaa	amsua	v7, 101	15	1	Y	direct
4	noaa	amsua	v7, 101	15	10	Y	direct
5	noaa	amsua	v7, 54	15	1	Ν	K
6	noaa	amsua	v7, 54	15	10	N	K
7	noaa	amsua	v7, 101	15	1	Y	K
8	noaa	amsua	v7, 101	15	10	Y	K
9	noaa	amsua	v7, 54	15	1	N	TL/AD
10	noaa	amsua	v7, 54	15	10	N	TL/AD
11	noaa	amsua	v7, 101	15	1	Y	TL/AD
12	noaa	amsua	v7, 101	15	10	Y	TL/AD
13	metop	iasi	v7, 54	183	1	N	direct
14	metop	iasi	v7, 101	183	1	Y	direct
15	metop	iasi	v7, 54	183	1	N	K
16	metop	iasi	v7, 101	183	1	Y	K
17	metop	iasi	v7, 54	183	1	N	TL/AD
18	metop	iasi	v7, 101	183	1	Y	TL/AD

The following table lists the cloud and aerosol-affected tests:

Test	Platform	Sensor	Coefs	nchannels	nprofiles	Interp?	Model	
Number			pred/levels		per call			
19	metop	iasi	v9, 100/101	183	1	N	direct	
20	metop	iasi	v9, 100/101	183	1	N	K	
21	metop	iasi	v9, 100/101	183	1	N	TL/AD	

The following table lists the Principle Component tests:

Test	Platform	Sensor	Coefs	channels/	nprofiles	Reconstructed	Model
Number			pred/levels	pcscores	per call	radiances/jacobians	
22	metop	iasi	v9, 100/101	300/100	1	Ν	direct
23	metop	iasi	v9, 100/101	300/100	1	Ν	K
24	metop	iasi	v9, 100/101	300/100	1	Ν	TL/AD
25	metop	iasi	v9, 100/101	300/100	1	Y	direct
26	metop	iasi	v9, 100/101	300/100	1	Y	K
27	metop	iasi	v9, 100/101	300/100	1	Y	TL/AD

Each test was run for a large number of profiles. The total number of profiles processed in each test is given in the following tables:

Tests 1-18:

AMSU-A	1000000			
direct only	profiles			
AMSU-A	100000			
direct/TL/AD/K	100000			
IASI	100000			
direct only	100000			
IASI	10000			
TL/AD & K	10000			

Tests 19-21:

IASI direct only	1000 profiles		
IASI TL/AD & K	100		

Tests 22-27:

IASI direct only	10000 profiles
IASI TL/AD & K	1000

The timing results are shown in the table on the following page; all times given are times *per profile* in ms. Notes on results:

- All timings were taken from the RTTOV test suite.
- ifort version 12.0.4 and gfortran 4.4.6 (distributed with RHEL 6.3) was used on the Intel platform and XLF 14.1 was used on an IBM POWER7 supercomputer. Compiler flags used in testing were similar for both platforms where only floating point safe optimisations were used (-O3 -fp-model source and -O3 -qstrict).
- For clear-sky simulations (Tests 1-18) RTTOV v11 generally runs as fast or faster than RTTOV v10.2. There is a marked improvement in performance for the K code on all platforms, whereas performance in improvements in the direct and TL/AD codes is more modest.
- For cloud and aerosol-affected simulations, the RTTOV v11 code is somewhat slower than RTTOV v10.2.
- Tests that are at least 10% faster for RTTOV 11 vs 10.2 are highlighted in green and those that are 10% slower are highlighted in red.

NWP SAF

RTTOV v11 Performance Tests

Doc ID : NWPSAF-MO-TV-029 : 1.0

Version Date : 16/05/13

Test Number	Intel gfortran v10.2	Intel gfortran v11	Intel gfortran v11:v10.2	Intel ifort v10.2	Intel ifort v11	Intel ifort v11:v10.2	IBM v10.2	IBM v11	IBM v11:v10.2
1	0.26	0.27	101.25	0.19	0.19	103.04	0.09	0.09	98.85
2	0.23	0.24	101.6	0.16	0.15	98.26	0.07	0.07	97.77
3	0.45	0.46	102.97	0.31	0.29	95.56	0.13	0.14	106.2
4	0.37	0.38	101.73	0.24	0.24	98.84	0.13	0.12	84.27
5	1.22	0.7	57.44	0.92	0.60	64.86	0.40	0.30	75.69
6	1.19	0.64	53.69	0.9	0.52	58.00	0.51	0.34	67.13
7	2.07	1.24	59.72	1.33	0.87	65.07	0.59	0.52	88.89
8	1.96	1.09	55.43	1.27	0.76	59.59	0.69	0.56	81.24
9	0.98	0.97	98.88	0.81	0.75	92.84	0.38	0.37	97.11
10	0.84	0.84	100.24	0.638	0.6	94.04	0.33	0.30	91.38
11	1.70	1.66	98.11	1.232	1.17	94.72	0.56	0.62	111.51
12	1.39	1.37	98.41	0.97	0.95	97.73	0.57	0.53	93.85
13	2.61	2.75	105.34	1.74	1.67	96.5	1.07	0.85	78.93
14	4.27	4.53	105.87	2.74	2.66	97.19	1.86	1.37	73.44
15	18.34	8.25	45.01	13.04	7.01	53.77	9.40	5.70	60.45
16	28.24	14.22	50.34	17.72	9.94	56.08	14.08	6.94	49.24
17	8.96	9.35	104.33	6.94	6.63	95.6	4.28	4.44	103.83
18	14.75	15.69	106.39	10.73	10.59	98.74	7.38	6.31	85.49
19				114.48	117.74	102.85	75.24	68.03	90.42
20				355.50	312.7	87.96	319	238.9	74.89
21				538.0	523.3	97.27	438.8	321.3	73.25
22	Tests no	ot performe	d on this	8.61	8.45	98.23	5.11	4.22	82.61
23		platform		2570.4	2552.4	99.3	1083.5	1015.9	93.76
24				360.1	373.6	103.75	226.5	204.4	90.24
25				8.61	8.55	99.27	5.27	4.40	83.46
26				5209.9	5146.9	98.79	1908.0	1848.9	96.90
27				362.5	361.1	99.61	22.91	20.95	91.4