

Adapting the AAPP microwave tests for EPS-SG: part 2 – surface tests

This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 7 September 2021, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, DWD and Météo France.

COPYRIGHT 2022, EUMETSAT, ALL RIGHTS RESERVED.

	Change record						
Version	Date	Author / changed by	Remarks				
1.0	15/08/2022	N C Atkinson					

Table of Contents

1.		3
2.	SURFACE TEST IMPLEMENTED IN AAPP V8	3
3.	THE TELSEM ATLAS	5
4.	MWS SIMULATION	6
5.	RESULTS FOR 8 CATEGORIES	8
6.	RESULTS FOR 6 CATEGORIES1	1
7.	CONCLUSIONS 1	5
8.	REFERENCES 1	.6
9.	APPENDIX – MEAN AND COVARIANCE TABLES FOR MWS	6

1. INTRODUCTION

NWP SAF document NWPSAF-MO-TR-040 discusses the adaption of several AAPP microwave tests for use with the MicroWave Sounder (MWS) on EPS-SG.

In this document we consider in more detail the test that is intended to characterise the land or sea surface.

It should be noted that these tests make use only of the observations, and do not use a model background. They can therefore be useful for detecting inconsistencies between the data and the model.

2. SURFACE TEST IMPLEMENTED IN AAPP V8

This section is largely based on the earlier document NWPSAF-MO-TR-040, and is included for completeness.

The surface test implemented in AAPP version 8 (and earlier releases) makes use of three channels, at 23.8 GHz (channel 1), 31.4 GHz (channel 2) and 50.3 GHz (channel 3). These channels are common to AMSU, ATMS and MWS. The test works by looking for the surface type that minimises a cost function

$$J = (T_1 - \overline{T_1}, \quad T_2 - \overline{T_2}, \quad T_3 - \overline{T_3}) \mathbf{C}^{-1} \begin{pmatrix} T_1 - \overline{T_1} \\ T_2 - \overline{T_2} \\ T_3 - \overline{T_3} \end{pmatrix}$$
(1)

where **C** is a 3x3 covariance matrix, T_i is the brightness temperature for channel *i* and the overbar denotes a mean brightness temperature. Values of **C**, $\overline{T_1}$, $\overline{T_2}$ and $\overline{T_3}$ are provided for 5 different fixed zenith angles (sec(z) = 1.0,1.25,1.5,1.75,2.0), and they are interpolated for each observation. Matrices are provided for 8 surface types, and a ninth (desert) is deduced afterwards from a test of channel 1 BT. The types are shown in Table 1. The principles for distinguishing the various types, based on emissivity characteristics (including variation with frequency) are given in Grody (1988).

Type number	Description
1	Bare young ice (i.e. new ice, no snow)
2	Dry land (i.e. dry with or without significant vegetation)
3	Dry snow (i.e. snow with water less than 2%, over land)
4	Multi-year ice (i.e. old ice with snow [assumed dry] cover)
5	Sea (i.e. open water, no islands, ice-free, WS=0 to 14m/s)
6	Wet forest (i.e. established forest with wet canopy)
7	Wet land (i.e. non-forested land with a wet surface)
8	Wet snow (i.e. snow with water content $> 2\%$, over land or
	ice)

Table 1: Microwave	surface	types	in	AAPP
--------------------	---------	-------	----	------

Adapting the AAPP microwave tests for EPS-SG: part 2 – surface tests

Doc ID :NWPSAF- MO-TR-041 Version : 1.0 Date : 15/08/2022

. 15/00/202

	part	_	00

9 Desert

The value of the cost function, after surface type identification, gives an indication of cloud liquid water. As stated in English (1997): *In simple terms, AMSU-A channel 1 is sensitive to total water vapour, channel 2 cloud liquid water and channel 3 absorber temperature. Because the covariance due to water vapour and temperature variations is large in channels 1 and 3, changes in the atmospheric profile have little impact on the cost, J. However, the introduction of liquid water, which increases channel 2 out of proportion, leads to a very rapid rise in cost. This test is sensitive enough to the presence of cloud liquid water to detect cloud amounts below 100 gm⁻².*

Note that matrix **C** is symmetric and its terms are all positive. C^{-1} is also symmetric but can have negative off-diagonal terms.

It is not known exactly what database was used to establish this test. The AAPP Scientific Description states: "Mean brightness temperatures and BT covariance matrices have been calculated (with a radiative transfer model) for the 20 AMSU channels for different surface types, with no cloud liquid water." Moreover, the document also says, "the coefficients are not well developed and its results are currently not very meaningful."

It is likely that the FASTEM land/sea-ice component was used. This is configurable via 5 input parameters to represent different surface types for MW emissivities (the "Grody parameters"). This code is still available in the current FASTEM (part of RTTOV), but it is considered to be deprecated (J. Hocking, pers. comm.).

Different centres would be expected to have different uses for the AAPP surface test output. At the Met Office, it is used (i) to improve the profile surface type and to set "mismatch" flags if the AAPP surface type differs from the model type, and (ii) to set an appropriate emissivity over sea ice (B. Candy, pers. comm). The Met Office requirement is for the AAPP test to distinguish between (i) sea, (ii) multi-year ice and (iii) other surfaces.

Figure 1 shows the AMSU surface type for NOAA-18 and NOAA-19 observations for the 00Z cycle on 16th March 2021. We can see that sea areas are correctly identified as type 5. Land areas are mostly classified as dry land (type 2) or wet land (type 7); it is not obvious whether there is any skill in distinguishing them. The main areas of wet forest (type 6) are over polar sea-ice – which is not realistic! There are some areas classified as multi-year ice (type 4) in the Arctic, but also some areas in central Asia which are more likely to be desert. Almost no areas are actually classified as desert, though note that this was a night-time scene over the African deserts, where the land surface is cold.

Figure 1: AMSU surface type from AAPP for samples with surface cost < 10K

The test would need improvement, and coefficients would need to be re-generated, if it is to be useful for MWS on EPS-SG. In the next section we discuss use of the TELSEM atlas in performing this task.

3. THE TELSEM ATLAS

RTTOV has an option to use emissivity values from the TELSEM version 2 atlas (Prigent and Aires, 2015). This atlas comprises monthly files from which it is possible to derive surface emissivity at different microwave frequencies. It is also possible to extract the surface category – there are 18 surface categories provided, covering land and sea-ice, as shown in Figure 2.

Adapting the AAPP microwave tests for EPS-SG: part 2 – surface tests
 Doc ID
 :NWPSAF- MO-TR-041

 Version
 : 1.0

 Date
 : 15/08/2022

Surface type	Class nb	Class1	Class2	Broad
	for each type	in TELSEM ²	in TELSEM ²	characteristics
Sea-ice	1	10	11	Sea-ice marging
	2	10	12	New sea-ice
	3	10	13	New sea-ice
	4	9	14	Multi-year sea-ice
	5	8	15	Multi-year sea-ice
	6	7	16	Multi-year sea-ice
Snow and	1	TELSEM class	17	Snow (small grain)
continental ice	2	TELSEM class	18	Snow (medium grain)
	3	TELSEM class	19	Snow (large grain)
	4	TELSEM class	20	Continental ice
	5	TELSEM class	21	Continental ice
	6	TELSEM class	22	Continental Ice
Continents	1	1	1	Tropical forest
(snow and ice-free)	2	2	2	Dense vegetation
	3	3	3	Bushes
	4	4	4	Grassland
	5	5	5	Deserts
	6	10	10	Water surfaces

Figure 2: TELSEM surface types. The table is from Prigent and Aires, 2016

The resolution of the atlas is 0.25° in latitude and longitude. Interpolation software is provided, to allow emissivity to be estimated at any point.

For AAPP use, it is clearly necessary to reduce the number of categories, which will be discussed in subsequent sections.

4. MWS SIMULATION

The NWP SAF Radiance Simulator (RadSim) was used to simulate MWS brightness temperatures for channels 1, 2 and 3 (23.8, 31.4 and 50.3 GHz respectively).

To generate the statistics from which the means and covariances can be derived, a rectangular (720 x 360) half-degree lat/lon grid was used – repeated 5 times for the 5 zenith angles. RTTOV was configured to use the TELSEM atlas.

Atmospheric state was taken from Met Office UM model fields. Two different sets of fields were used covering different seasons and times of day

- 20210316T0000Z
- 20220807T1200Z

This allows simulated brightness temperatures to be generated. The analysis could be extended later, if needed, to cover other seasons and times.

The TELSEM categories were extracted from the database, for the appropriate month. These should be consistent with the simulated BTs. The outputs were then combined and analysed according to the scheme illustrated in Figure 3.

Figure 3: Processing scheme used in this study

The 'analyse' step in Figure 3 is as follows:

- 1. For each observation, identify the surface category (discussed in subsequent sections) and the zenith angle category.
- For each surface category i and zenith angle category j, compute the sum of the BTs and also the sum of B_{ij} B_{ij}^T (where B_{ij} is a 3-element column vector of brightness temperatures for the 3 channels). The sums are stored in a file which can be added to in subsequent runs.
- 3. For each category, compute the mean BT: $\mathbf{m}_{ij} = \Sigma(\mathbf{B}_{ij})/n_{ij}$ and covariance $\mathbf{C}_{ij} = \Sigma(\mathbf{B}_{ij} \mathbf{B}_{ij}^{T})/n_{ij} \mathbf{mm}^{T}$, where n_{ij} is the number of observations in categories i and j.

The March and August runs were combined together before computing means and covariances.

Having computed the means and covariances, it is then possible to access the degree to which the different surface categories can be identified in the simulated BTs, by computing the cost function (eq. 1) for each category and identifying the category that minimises the cost function.

For this assessment, the sample locations and viewing geometry were taken from approximately 12 hours of ATMS data. Both NOAA-20 and Suomi NPP were used, in order to give a good distribution of viewing angles. AAPP "level 1d" files were used, retaining all 96 spots across scan, but thinning to 1 scan in 3. Note that the date and time of the ATMS observations is irrelevant as they are merely to provide a good geographical spread of sample locations and angles. The

reference matrices for the 5 zenith angles were interpolated for each observation – as in the operational version of AAPP.

5. **RESULTS FOR 8 CATEGORIES**

As noted previously, a scheme such as the one described above cannot expect to identify all 18 TELSEM categories. As a first attempt at reducing the number of categories, they were merged so as to give 8 categories similar to those implemented in AAPP v8.

AAPP	TELSEM Class2	Characteristic
category		
number		
1	11, 12, 13	New sea-ice
2	3, 4	Bushes; grassland
3	17, 18, 19	Snow
4	20, 21, 22, 14, 15, 16	Continental ice; multi-year sea-ice
5	-	Ocean
6	1, 2	Tropical forest; dense vegetation
7	10	Water surfaces over land
8	5	Desert

Table 2: Translation of TELSEM categories to eight categories based on those in AAPP v8

Note that there is no TELSEM category for "wet snow" – hence there are only 8 categories, not the 9 shown in Table 1.

Maps of the 8 classes corresponding to the TELSEM atlas are shown in Figure 4 for March and Figure 5 for August. Note the rather large extent of northern hemisphere snow in March (category 3), and the Antarctic sea-ice in August (category 4).

Figure 4: TELSEM categories for March converted to 8 AAPP classes. Note that data poleward of 87.5°N have been excluded as the TELSEM atlas appears to be missing these points

Figure 5: TELSEM categories for August converted to 8 AAPP classes

The retrieved surface types are shown in Figure 6 and Figure 7 for March and August respectively.

Figure 6: Retrieved surface category for 00Z on 16 March 2021 using simulated MWS BTs from ATMS sample locations. Note that the gap in the south Atlantic is because the time period used was a little less than 12 hours.

month 8 50 1 = New sea-ice 2 = Bushes, grassland 3 = Snow Q 4 = Ice 5 = Ocean 6 = Forest 7 = Land water 8 = Desert -50-100 0 100 2 8 AAPP class estimated from simulated BTs

Figure 7: Retrieved surface category for 12Z on 7 August 2022 using simulated MWS BTs from ATMS sample locations

We can make the following observations:

- The distinction between "new ice" and "ocean" appears to be weak. There is far too much "new ice" shown in the retrieved categories. If this was used to identify sea areas as part of a quality control system, a lot of data would be rejected.
- The land categories are rather mixed up.
- There is reasonable skill in the sea-ice.
- The "desert" category exists mainly over Africa, and is only detectable in the microwave radiances in the daytime, once the land surface has heated up

6. **RESULTS FOR 6 CATEGORIES**

To attempt to improve these aspects, the number of categories was reduced to 6 by merging new sea-ice with ocean, and merging water surfaces over land with dense vegetation. See Table 3, Figure 8 and Figure 9.

NWP SAF

 Table 3: Translation of TELSEM categories to six categories

category number	TELSEM Class2	Characteristic
1	None, 11, 12, 13	Ocean and new sea-ice
2	20, 21, 22, 14, 15, 16	Multi-year ice
3	1, 2, 10	Wet land and forest
4	3, 4	Dry land
5	17, 18, 19	Snow
6	5	Desert

Figure 8: TELSEM categories for March converted to 6 AAPP classes

Figure 9: TELSEM categories for August converted to 6 AAPP classes

The corresponding retrievals are shown in Figure 10 and Figure 11.

Figure 10: Retrieved surface category (1 to 6) for 00Z on 16 March 2021 using simulated MWS BTs from ATMS sample locations

Figure 11: Retrieved surface category (1 to 6) for 12Z on 7 August 2022 using simulated MWS BTs from ATMS sample locations

With six categories, the retrieval is somewhat improved. The ocean, sea-ice and snow categories are broadly correct. The desert is reasonable during the day. There is rather limited skill in distinguishing between dry land and vegetated land, but that is of secondary importance as far as AAPP users are concerned (infrared techniques work better in that regard).

The cost function (defined in equ. (1)) corresponding to Figure 11, is shown in Figure 12. In AAPP, the cost function is normalised by dividing by the square of the number of channels, and a threshold for cloud is specified as 5.5 in the normalised cost function. Nearly all points in Figure 12 would therefore be classified as cloud-free – which is as expected since no clouds were included in the RTTOV simulation.

Figure 12: Cost function (un-normalised) corresponding to Figure 11. AAPP subsequently normalises the cost by dividing by the square of the number of channels

7. CONCLUSIONS

A six-category standalone surface test has been devised for use with MWS. It is proposed to implement this test in AAPP version 9, in the module that will accommodate EPS-SG. Mean BTs and covariances are shown in the Appendix.

There may be benefits to carrying out a similar analysis using post-launch observed BTs rather than simulated – provided that effective cloud-clearing is available.

8. **REFERENCES**

English S.J., R. J. Renshaw, P. C. Dibben, and J. R. Eyre, 1997: "The AAPP module for identifying precipitation, ice cloud, liquid water, and surface type on the AMSU-A grid". *Proceedings of the Ninth International TOVS Study Conference,* J. R. Eyre, Ed., ECMWF, 119–130 http://library.ssec.wisc.edu/research_Resources/publications/pdfs/ITSC9/english01_ITSC9_1997.pdf

N. C. Grody, "Surface identification using satellite microwave radiometers" in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 26, no. 6, pp. 850-859, Nov. 1988.

Catherine Prigent and Filipe Aires, 2016: "Tool to Estimate Land Surface Emissivity at Microwaves and Millimeter waves", EUMETSAT Project EUM/CO/14/4600001473/CJA, available from https://nwp-saf.eumetsat.int/site/software/rttov/download/ (included in TELSEM download).

9. APPENDIX – MEAN AND COVARIANCE TABLES FOR MWS

	AmeanBT =		
!	Surface 1		
	172.2773	159.1212	222.3246
	176.1041	158.9730	228.6729
	187.5106	168.8058	237.4759
	199.1255	179.9392	244.6851
	209.0610	189.8634	249.8916
!	Surface 2		
	212.6208	212.0501	222.1425
	205.3085	204.4546	221.0775
	204.9024	202.7020	221.8196
	205.5846	202.0665	222.8645
	206.5107	201.8338	223.9334
!	Surface 3		
	271.9104	269.4530	273.8154
	272.9976	269.6643	273.6113
	273.7021	269.8256	273.1757
	274.4722	270.2219	272.7511
	275.1930	270.6958	272.2836
!	Surface 4		
	277.1412	275.7126	275.9280
	276.7378	274.7915	274.9898
	275.5508	272.9698	273.4575
	274.9624	271.7766	272.3121
	274.7267	271.0152	271.4140
!	Surface 5	005 01 65	000 0501
	240.4295	237.0165	239.6501
	238.0909	232.1580	238.3965
	236.8806	229.3316	238.1806
	236.3975	227.5217	238.4265
	230.2/00	220.3215	238.8519
:	SUFIACE 6	202 0514	202 7207
	∠୪३.4୨७⊥ २०२ 15२5	202.UJ14 201 0606	202.1201 201 7/12
	203.1335	201.0000	201./412

Sate	The EUMETSAT Network of allite Application Facilities	2	NWP SAF	Adapting the AAPP microwave tests for EPS- SG: part 2 – surface tests	Doc ID Version Date	:NWPSAF- MO-TR-041 : 1.0 : 15/08/2022
	281 280 280 Acov	.6212 .8539 .6029 =	278.6832 277.1559 276.2811	279.8548 278.4293 277.3721		
!	Surfa 572 331 193	ce 1 .7359 .3108 .5161	331.3117 284.2204 114.6702	193.5178 114.6667 77.4203		
	723 394 228	.8991 .4720 .0381	394.4729 309.8286 117.2395	228.0416 117.2430 85.3178		
	764 401 236	.4414 .4546 .9559	401.4511 288.8710 109.7992	236.9489 109.8010 90.6207		
	760 394 240	.3864 .5778 .1061	394.5778 263.9452 107.1177	240.1043 107.1194 97.1071		
	742 388 242	.9573 .8245 .4440	388.8227 248.0406 109.7350	242.4440 109.7385 103.4850		
:	865 852 584	.9026 .0393 .0352	852.0393 849.1563 600.5607	584.0352 600.5607 505.3091		
	957 883 571	.8180 .4231 .1099	883.4231 827.6511 536.8618	571.1099 536.8618 435.6057		
	937 850 548	.1466 .7619 .7581	850.7619 790.5874 505.8399	548.7581 505.8399 417.6859		
	905 816 531	.3373 .4185 .2586	816.4185 758.0861 484.2149	531.2586 484.2149 405.3534		
!	000 792 517 Surfa	.1313 .0907 .0356 ce 3	737.6231 468.9370	468.9370 393.8088		
	677 727 367	.9994 .1792 .2439	727.1792 798.4813 395.8819	367.2439 395.8819 208.1688		
	633 700 318	.4822 .0149 .2056	700.0149 796.7484 352.1977	318.2056 352.1977 169.6163		
	518 578 241	.6329 .9856 .2693	5/8.9856 673.0345 268.2259	241.2693 268.2259 122.0426		

The EUMEISAT Network of Sotellife Application Facilities	NWP SAF	Adapting the AAPP microwave tests for EPS- SG: part 2 – surface tests	Doc ID Version Date	:NWPSAF- MO-TR-041 : 1.0 : 15/08/2022
418.739 469.349 183.338	469.3496 553.2678 4 202.5348	183.3384 202.5348 90.4195		
343.125 386.232 144.313	1 386.2328 8 459.7285 9 158.2054	144.3139 158.2054 71.6888		
L Cumfage A				
! Surface 4 216.769 218.313 176.797	4 218.3131 1 221.5473 2 178.4317	176.7972 178.4317 148.8197		
219.376 221.330 170.838	2 221.3307 7 225.7368 7 172 5833	170.8387 172.5833 139 4114		
216.896 218.080	6 218.0800 0 222.0403	162.8190 163.8111 128.4772		
213.535	4 213.9895	155.5059		
155.505	9 155.4934	119.0975		
210.340 211.132 148.911	2211.132020215.01009148.8125	148.9119 148.8125 111.1047		
! Surface 5 357.531 376.803 265.738	4 376.8039 9 409.8458 7 296.0162	265.7387 296.0162 230.6145		
384.451 404.573 260.676	3404.57311444.72139294.9822	260.6769 294.9822 212.8816		
385.470 411.009 248.201	5411.00999462.47025284.6516	248.2015 284.6516 191.5368		
378.697 410.318 233.378	7410.31822471.51272270.6679	233.3786 270.6679 171.8042		
369.549 406.948 218.825	2406.94855476.60994255.7111	218.8254 255.7111 153.7717		
! Surface 6 350.034 358.799 285.833	3 358.7999 9 369.3788 37 293.4213	285.8337 293.4213 235.7079		
340.010 351.341 265.842	7 351.3412 2 365.0915 2 274.9252	265.8422 274.9252 210.3610		

The EUMETSAT Network of Satellite Application Facilities	2	NWP SAF	Adapting the AAPP microwave tests for EPS- SG: part 2 – surface tests	Doc ID Version Date	:NWPSAF- MO-TR-041 : 1.0 : 15/08/2022
323	.4083	334.3326	238.8365		
334	.3326	348.1589	247.0750		
238	.8365	247.0750	178.6523		
313	.0638	325.0145	219.8418		
325	.0145	340.1192	228.1414		
219	.8418	228.1414	156.5159		
303	.8927	317.4441	203.5820		
317	.4441	334.9548	212.3494		
203	.5820	212.3494	138.6153		