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1 Online bias correction
At DWD we are currently using an online bias correction scheme. This is an adaptive scheme which estimates the
observation biases as part of the DA cycle adjusting the bias correction continuously. The scheme is implemented
as part of the data assimilation code (DACE) and can be configured to estimate the time varying bias correction
coefficients based on a linear regression using i) observation minus background or ii) observation minus analysis.
A variational bias correction scheme (iii) is also available. Currently observation minus background statistics
are used [option i)], but work is underway to replace this by using observation minus analysis statistics [option
ii)].

A static bias correction scheme operating on statistics accumulated over a fixed time period is available as
well. Before describing the adaptive scheme, we start with a short summary of the underlying static scheme.

Static bias correction
Static BC schemes minimize a cost function for the departures of bias corrected observation from the background
or analysis equivalents.

JBC = (yo − bo (x, β)−H (x))
T

(yo − bo (x, β)−H (x)) (1)

where H is the observation operator which computes the model equivalents to the observation yo from the
model states x. As usual the bias correction increments

bo (x, β) =
∑
i

βi pi (x) (2)

are defined as linear combination of model state dependent predictors pi (x). Note that yo, bo, H (x) as well as
pi are vectors in observation space. As bias correction coefficient estimates are based on statistics of periods of
typically one month, the vectors actually extend over observations from this period. At DWD, different satellite
channels are treated independently, i.e., they have their own independent set of predictors which correspond
to a subset of all possible βi and only those components of pi that apply to the corresponding channel are
non-zero, respectively.

Minimizing the cost function (1) for the bias correction coefficients βi leads to the equation

βi =
∑
j

{
C−1
p

}
ij
{Vp}j (3)

with

{Cp}ij = pTi pj

[
≡
∑
α

{pi}α
{
pj
}
α

]
(4a)

{Vp}j = pTj (yo −H (x)) . (4b)

Here, Cp and Vp are a matrix and a vector in predictor space. Their elements are computed as scalar products
in observation space (as illustrated in Eq.4a by including the sum over all observations α explicitly). These
computations involve a large number of observations, the learning data from which the bias correction coefficients
βi are computed. Particular care has to be taken when inverting the matrix Cp and, as explained below, some
regularization may be applied to ensure that Cp is positive definite.
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The online scheme
In our online BC the terms {Cp}ij and {Vp}j obtained from the learning data are continuously updated in each
assimilation cycle using the new observations by replacing Eqs. 4a and 4b by

{Cp}ij = fτ
{
Cbp
}
ij

+ pTi pj (5a)

{Vp}j = fτ
{
V bp
}
j

+ pTj (yo −H (x)) (5b)

where
{
Cbp
}
ij

and
{
V bp
}
j
are the old statistics used at the previous cycle while with the second terms on the

right hand sides, statistics related to the new observations yo (with the corresponding predictors pi) are added.
The weight of the old statistics stemming from the previous cycles is reduced by a factor

fτ = exp

(
−∆t

τ

)
(6)

(where ∆t is the time since the last statistics where taken and τ is the chosen decay time for the memory of
the system). This means that the influence of the collected statistics decays with a characteristic time τ .

Regularization
As for many statistical schemes, robustness critically depends on the inversion (or invertibility) of matrices which
are obtained from averaging over real world data and which therefore are vulnerable to statistical fluctuations
that might prevent their invertibility. To this end, provision has been made to inflate the diagonal elements of
the matrix Cp (Eq. 4a or 5a) by a factor (1+ν) where ν is a number between zero and one. This would penalize
large changes of the bias correction coefficients. So far, however, no problems with the inversion of this matrix
have been encountered with the operational system but forecast impact studies gave small detrimental results
when error inflation is applied. Therefore ν = 0 is used which means that there is currently no regularization
applied in the DWD online bias correction scheme.

2 Technical setup at DWD

Available Predictors
For each satellite and instrument a different set of predictors may be chosen. The bias correction scheme can be
configured to either i) ignore a predictor, ii) gather statistics but not use the predictor, or iii) gather statistics
and use the predictor. This way statistics can be accumulated online for predictors, instruments or channels
that will be used actively at a later time.

Currently the following predictors may be specified:

thickness thickness between two pressure levels
iwv integrated water vapor
bt modelled brightness temperature (for specified channel and instrument)
obs_bt observed brightness temperature (for specified channel and instrument)
T_SurfSkin surface skin temperature
scan.ang scan angle (as an alternative to the field of view predictors, see below)
v10 10 m wind speed
Y_lm spherical harmonics (to specify an explicit spatial dependence)
product product of any 2 predictors presented above

Currently only meridional wave numbers are implemented for the spherical harmonics predictor. By speci-
fying the product of a predictor with the spherical harmonics predictor, a spatial dependence of the predictor
is achieved (if not present so far).

Predictors currently used at DWD
At DWD the dependence of biases on the scan angle of the satellite instrument is taken into account by having
a different constant term for each field of view. For an instrument for which Nsc scan positions are assimilated,
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τ

AMSU-A and ATMS 30 days
IASI, HIRS, 14 days

SEVIRI, ABI, AHI 14 days
MHS, SSMIS, GMI, SAPHIR 7 days

Table 1: Operationally employed values for the memory decay time τ

the first Nsc predictors therefore take the form (1 ≤ n ≤ Nsc)

pn =

{
1 at scan position n
0 otherwise

.

(Note that this choice of predictors makes a globally constant term redundant).
From the list above, only four air mass related bias correction predictors are used for satellite sounding

channels. These involve layer thicknesses between:

• 1 hPa and 10 hPa

• 5 hPa and 50 hPa

• 50 hPa and 200 hPa

• 300 hPa and 900 hPa

For updating the bias correction statistics, only observations are used which have passed all the quality checks
(including cloud detection where applicable) that are required for the assimilated data. Only the thinning
employed for selecting these data is less restrictive than for the operationally assimilated observations. In
practice, depending on the observation type and weather situations, five to ten times more data than actively
assimilated are typically used for updating the bias correction statistics at each assimilation step. The current
operational setting for the memory decay time τ is given in table 1.

Apart from satellite radiances, scatterometer data are also bias corrected but with a single predictor (apart
from a constant term) which is the 10m wind speed. Furthermore, a simple form of bias correction is also applied
to aircraft temperature measurements which for each aircraft and each phase of flight (ascending, descending
or cruise level, respectively) involves an independent linear regression with only a constant (i.e., model state
independent) predictor.

3 Comparison between online BC and VarBC
The biggest difference between our current use of the online BC and the variational bias correction (Var BC)
used at some other centers is the fact that we are currently correcting the biases with respect to the background
and not to the analysis state. Otherwise, when using the online BC with respect to the analysis, we expect our
scheme to bear strong similarity with an appropriate Var BC scheme. In this context the work by Eyre (2016)
is instructive who investigated the impact of a continuous relaxation towards the model bias by the short term
forecast. He considered the case where the system has reached its asymptotic quasi-stationary state in which
the bias correction is fully converged to an asymptotic constant value. He showed that this asymptotic value
is a linear combination of the model bias and the bias of the anchoring observations. Following his arguments,
it is clear that the asymptotic stationary bias is largely identical for the online scheme and Var BC as long
as the bias correction is performed with respect to the analysis (which is always the case for the Var BC).
The corresponding stationary bias is actually also quite similar for the online BC versus background although
slightly less optimal (i.e., more influenced by the model bias) than for the other two schemes.

The main question therefore is how the different schemes react when away from their asymptotic values
which comprises

• the behavior in the vicinity of this quasi stationary state (this includes the response to slow variations of
the model bias, e.g., with changes of season and/or weather regimes).

• the schemes’ ability to compensate for sudden changes of observational or model bias (compare cases
discussed in Auligné et al. (2007)).
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Below it is shown that the equations for computing the analysis increments (for model state and bias correction
coefficients) are basically the same for the online scheme versus analysis and an appropriate Var BC scheme.
The main difference is that the Var BC scheme is implicit (both equations for model state and bias coefficient
increments are solved simultaneously in a single step) while in the online scheme the increments are computed
sequentially. This is not expected to make a big difference for the first point above where changes are generally
slow enough, but for the fast response listed under the second point the more implicit Var BC scheme has a
better scope. To this end it has to be pointed out that the rapidity of the schemes’ response to changes in
biases is in principle governed by tunable parameters in these schemes (the decay time τ for the online scheme
and the background uncertainty Bβ for the estimated coefficients in Var BC). The more implicit nature of the
variational scheme, however, allows a more aggressive tuning in this respect. The parameters τ and Bβ can be
configured so that the schemes are fully equivalent, with the only exception that the VarBC scheme already
uses the deviations of the current analysis step to estimate the bias correction parameters whereas the adaptive
scheme only utilizes the statistics of the past. Consequently these two configurations should behave differently
only if i) the system is actually configured to be able to capture sudden changes in the bias (τ not much larger
than the time ∆t between two assimilation steps and, accordingly, Bβ sufficiently large) and ii) sudden changes
actually occur. However, small reaction times will be specified with care as this implies a smaller statistical
base and may involve regularization issues.

Below we show that the equations for the online scheme (versus analysis) and an appropriate variational
scheme are indeed largely identical. To show this, we first reformulate the equations for the online BC (intro-
duced above) and then briefly summarize Var BC focusing on the Var BC method which matches our online
BC most closely.

Var BC schemes estimate the bias correction coefficients β using the background term βb from the previous
cycle, its background error covariance Bβ and data from the current assimilation cycle. For a straightforward
comparison we rewrite the equation for βb from the online bias correction scheme in terms of the contributions
from the different cycles. For this we insert equations (5a) and (5b) into (3):

βi =
∑
j

{
fτ
{
Cbp
}
ij

+ pTi pj

}−1 {
fτ
{
V bp
}
j

+ pTj (yo −H (x))
}

(7)

=
∑
j

{
fτ
{
Cbp
}
ij

+ pTi pj

}−1 {
fτ
{
βb Cbp

}
j

+ pTj (yo −H (x))
}

(8)

where in the last line we used V bp = βb Cbp which follows directly from Eq.3.
Each term in this equation corresponds to a sum over a large number of observations, respectively. For

comparing the online method with Var BC below, it is useful to introduce normalized quantities

Ĉp = m−1
n Cp

Ĉbp =
(
mb
n

)−1
Cp

where the scaling factor mn is the effective number of observations used for computing Cp which is updated
with each assimilation cycle as

mn = fτm
b
n +m

where m is the number of assimilated observations (i.e., the dimension of yo). Assuming for simplicity constant
numbersm at each cycle,mn has the saturation valuemasymp

n = m/ (1− fτ ) whichmn approaches exponentially
with the characteristic time τ .

Comparison with Var BC
Var BC adds an additional term to the usual cost function of variational data analysis by writing

J (x,β) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2
(yo − bo (x,β)−H (x))

T
R−1 (yo − bo (x,β)−H (x))

+
1

2

(
β − βb

)T
B−1
β

(
β − βb

)
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where the bias correction vector bo (x,β) was introduced in Eq.2. The covariance matrix Bβ is generally block
diagonal with respect to the subspaces related to the individual satellite channels so that the resulting equations
for corresponding coefficients βi (i.e., the components of β related to the respective satellite channels) largely
decouple between these subspaces. Below for notational simplicity, we are restricting the discussion to the
assimilation of a single satellite channel whose observation error is given by R.

Differentiation of J with respect to the model state x, leads to the following equation for the value at the
cost function minimum xa

xa − xb = K̃
(
yo − bo

(
xb,βa

)
−H

(
xb
))

(9)

where K̃ can be obtained from the usual Kalman gain matrixK by replacing the linearized observation operator
(the linearized version of H (x)) by the corresponding linearization of H̃ (x) = H (x) + bo (x,β). Including the
gradient of bo (x,β) with respect to x in this equation, physically amounts to computing the predictors at the
analysis point (i.e., using pk,i (xa)) and not with the background state as it is done for the online scheme (and
also for many Var BC versions where this dependence is neglected1). While this may lead to noticeable impacts
under some circumstances (particularly in the extra tropics if a cold or warm front is shifted by the analysis
increments), in most regions one has pk,i (xa) ≈ pk,i

(
xb
)
and therefore K̃ ≈ K. We therefore expect that the

difference of the Kalman gain matrices has little influence on the global bias of the analysis increments.
Before discussing the corresponding equation for the analysis coefficients βa, we would like to note that,

following the analysis of Eyre (2016), the bias of the asymptotic quasi-stationary equation towards which the
coupled system tends does not depend on the particular form of the equation for βa (as long as the system has
a stationary attractor where βa = βb = const). In this limit one has βa = const so that the equation for βa

and that for the analysis increments decouple and the remaining bias (i.e., the actual value of βa in this limit)
is fully constrained by the competition of the analysis weights on one side and the rate at which the forecast
model pulls the analysis state towards its bias on the other (compare Eyre (2016)) . Similar constraints (though
quantitatively different) apply also when correcting the bias with respect to the background state.

The equations for the analysis coefficients βa is obtained from differentiating J by these coefficients and can
be written as

βa =

[
B−1
β +

pTp

R

]−1(
B−1
β β

b +
pT (yo −H (xa))

R

)
(10)

while the corresponding analysis error covariance matrix Aβ for βa can be written as

Aβ =

[
B−1
β +

pTp

R

]−1

(where we used the well known relation A =
[
B−1 +HTR−1H

]−1

but replacing B → Bβ and H → p as
adequate for the β-dependency of the cost function J (x,β) above).

Choosing now

B−1
β =

fτC
b
p

R
(11)

one finds that the formulations to derive the bias correction coefficients from the Var BC (10) and from the
online bias correction (8) are exactly the same when we set x = xa (i.e. perform online bias correction versus
analysis). Further, the corresponding updating of the coefficients Cbp in Eq.5a corresponds to a cycling of the
B-matrix

Bβ (t+ ∆t) = f−1
τ Aβ (t)

where the new Bβ is obtained by inflating the analysis covariance matrix from the last cycle with a factor f−1
τ .

It is not uncommon to choose Bβ to be diagonal, in which case the last term of the cost function J (x,β)
penalizes changes of the individual coefficients βi. In contrast to this, using Eq.11 leads to a strongly nondiagonal
matrix Bβ which penalizes the resulting changes to the actual bias reduction. To see this we note that Ĉbp =

1E.g., in the DWD Var BC implementation, predictors are currently not based on x, but evaluated once for the background
value xb only.
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Cbp/m
b
n can be considered as an estimator for

(
pTp

)
/m so that the last term of the cost function J (x,β) can

be written as(
β − βb

)T
B−1
β

(
β − βb

)
' α

R

∑
i,j

(
βi − βbi

) (
βj − βbj

) [
pTp

]
ij

=
α

R

(
bo (x,β)− bo

(
x,βb

))T (
bo (x,β)− bo

(
x,βb

))
where

α = fτ
mb
n

m
.

In practice we do not need to compute the constant α since Cbp is directly computed off line. However, to get
some impression of the relative magnitude of the Bβ term in the Var BC cost function we give the expression
for α obtained for a saturated system (which has been collecting data for a time t sufficiently larger than τ ):

α =
fτ

(1− fτ )
=

(
exp

(
∆t

τ

)
− 1

)−1

which for large (or moderately large) τ/∆t can be approximated by

α ≈ τ

∆t
− 1

2

(already for τ/∆t = 2 the error of this approximation is less than 3 percent) yielding an approximately linear
relation ship if the magnitude of τ is larger than ∆t.

Some remarks may be appropriate:

• The correspondence of the variational and online schemes is not surprising since both methods are based
on the minimization of quite similar cost functions.

• In practice, the choice of Bβ in (11) may occasionally lead to large variations in the time series of back-
ground bias correction coefficients βb while the bias correction b(βb) itself remains stable. This means
that the bias correction gives meaningful results even if bias correction coefficients are highly correlated
and certain linear combinations are not well constrained.

• The correspondence of equations (10) and (8) shows that online bias correction using analyses can be
configured to behave almost exactly in the same way as the variational scheme. The only difference is that
variational bias correction is able to use data of the current cycle to estimate bias correction coefficients,
while the online bias correction is limited to statistics from the past. This makes the variational scheme
more suitable for running with a shorter memory decay time and thus adapting faster to changes in
observational bias (through using a larger Bβ corresponding to a small τ).

• It should, however, be noted that also for the variational scheme, very short memory times may be
problematic since for small α (or more precisely, small eigenvalues of Bβ) the inversion of the matrix
in the first bracket on the right hand side of Eq.9 may require regularization measures which effectively
increase the memory time.

• The correspondence between the online and variational scheme offers the opportunity of evaluting input
quantities to the variational scheme on a broader statistical basis when using the computational setup of
the online scheme. More precisely, including in Eqs.(5a,b) more data than have been actively assimilated
at the previous cycles (e.g. by using a less restrictive thinning) allows a broader evaluation of βb and Bβ .
The possibility to evaluate such quantities outside the assimilation scheme also offers opportunities for
the preparation of the future assimilation of currently inactive data types.

The bias correction scheme at DWD is implemented as described above having options for online bias correction
using background or analysis and variational bias correction as well. While, as mentioned above, theoretical
considerations favor bias correction against the analysis, at DWD we currently obtain better forecast impact
results when using the background instead. The reasons for this need to be investigated further and may include
imbalances (spin up/down) or residual biases (possibly induced by the bias correction increments themselves)
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in the analysis state. Work is ongoing to use a bias correction versus analysis starting from analyses based on
conventional data, atmospheric motion vectors and radio occultation data and complemented by radiances from
carefully chosen instruments/channels only. Also, other aspects of observation bias correction are being looked
at, e.g. the choice of predictors, including the use of non-linear terms, the bias correction for cloud radiances
and bias correction for conventional observations.

Variational bias correction differs from online bias correction only in case of sudden changes of biases. They
can be captured only if the contribution of the statistics of the current cycle is large. Currently the specified
time constant τ between 7 and 30 days is large compared to the data assimilation cycle time ∆t = 3h so that
the variational formulation is not expected to have any impact compared to the online scheme using analysis
data.
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