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Abstract 

The present document constitutes the report of Working Package 2 of 
the project Processor for ERS-SCAT-based Soil Moisture. The proposal 
was submitted by the Institute of Photogrammetry and Remote Sens-
ing (I.P.F.) at Vienna University of Technology (TU Wien) as a re-
sponse to EUMETSAT’s Request for Quotation 05/934. The objective of 
the project is to develop a demonstration software application for near 
real time (NRT) surface soil moisture retrieval from ERS-1/2 scat-
terometer (ESCAT) data, using version 4.0 of I.P.F.’s WARP (soil WA-
ter Retrieval Package) processing software. 

Working Package 2 deals with the spatial resampling of the global 
soil moisture retrieval parameter database existent at the I.P.F. to the 
satellite swath geometry of the ESCAT data. This processing step is re-
quired in order to calculate surface soil moisture from the backscatter 
measurements which are input in the system on a NRT basis. In this 
report we present the characteristics of the ESCAT Discrete Global Grid 
(DGG) used in WARP 4.0, the soil moisture parameter input files as well 
as the orbit geometry of the ESCAT instrument. We then develop an al-
gorithm involving finding the spatial neighbourhood of the incoming 
ESCAT measurement location and resampling the nearest DGG parame-
ters using a Hamming apodisation function. Suggestions for improve-
ments of future versions of the WARP DGG are also given. 
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1 Introduction 

Since 1994 the Institute of Photogrammetry and Remote Sensing 
(I.P.F.) at Vienna University of Technology (TU Wien) is actively in-
volved in deriving soil moisture data using scatterometer measurements 
from the scatterometers onboard the ERS-1 and ERS-2 satellites. For 
convenience, in the present document we will refer to the scatterome-
ters as ESCAT. A result of this involvement is the development of the 
WARP (soil WAter Retrieval Package) processing chain, based on the 
soil moisture retrieval method developed by Wagner (1998). The 
method is based on long-term time series of ESCAT data using a change 
detection algorithm tailored to the sensor characteristics. The algo-
rithm exploits the multiple viewing capabilities of the sensor in order to 
separate soil moisture and vegetation effects. 

The TU Wien-model requires two basic steps. In the first step a set 
of parameters are retrieved, describing the specific backscatter proper-
ties (influence of vegetation, viewing geometry, noise, etc.) for each 
point of the Earth land surface. In the second step, these quasi-static 
(updated every several months/years only) parameters are used for the 
subsequent retrieval of soil moisture information. The retrieval of the 
backscatter properties involves long-term time series analysis. ESCAT 

0σ  backscattering coefficient measurements have therefore been spa-
tially aggregated into sets of regions (so-called grid areas) that parti-
tion the surface of the Earth in an approximately regular manner. Such 
regions form a Discrete Global Grid (DGG), as described in depth in 
Sahr et al. (2003). Each defined grid area is associated with time series 
of backscatter measurements and holds its own entry in the backscatter 
metadata database. 

With the proposal Processor for ERS-SCAT-based Soil Moisture sub-
mitted to EUMETSAT, the I.P.F. has undertaken to develop a demon-
stration application software (called WARPNRT 1.0) in which the 
TU Wien-method is applied in near real-time (NRT) mode to incoming 
ESCAT backscatter measurements, demonstrating the NRT generation of 
surface soil moisture data. In opposition to the long time series-based 
processing case of the latest version of the WARP software (v. 4.0), in 
the NRT case the incoming backscatter data are distributed spatially 
according to the geometry of the sensor swath, whereas the parameter 
database follows the geometry of the predefined DGG. This yields the 
problem of resampling the parameters in the closest neighbourhood of 
the incoming 0σ  location before the NRT processing can continue. This 
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report describes the solution chosen to solve this problem. Section 2 de-
scribes the DGG used in WARP 4.0 and the parameter database associ-
ated with it, while Section 3 presents the geometry of the ESCAT meas-
urements within the sensor swath. In Section 4 the chosen resampling 
method is described. Additionally, Section 5 assesses aspects of the 
DGG that need to be improved ahead of future versions of the WARP 
software, which will also include data from the upcoming ASCAT scat-
terometer onboard the MetOp satellite series.    
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2 The WARP 4.0 DGG and Parameter Database 

2.1 The Grid 

The discrete global grid used in WARP 4.0 for ESCAT data aggrega-
tion is an adapted version of a sinusoidal global grid. First, a series of 
latitude small circles are created, equally spaced with a central angle of 
0.25º in the south-north direction along any meridian, starting with the 
south pole (Fig. 2–1 a). A spherical earth with radius 6370r =  km is 
assumed, yielding a constant spacing between the latitude circles of 

79.27180/25.06370 ≈⋅⋅ π km, required by the processing of ESCAT 

data (Scipal 2002). Equation 2–1 gives the latitude of each such small 
circle. 

 

 ( ) Nj,18041,5.025.090 ∈⋅<≤−⋅+−= jj
j

λ  (2–1) 

 

In the longitudinal direction, the Equator is also divided into 0.25º 
longitude intervals, giving 14403604 =⋅  divisions. Each latitude circle 
is then subsequently divided into 

j
λcos1440 ⋅  divisions, ensuring the 

same 27.8 km spacing in the west-east direction as well, subject to 
slight variations due to decimal truncation (see Fig. 2–1 b). The num-
ber of grid points on each latitude circle decreases thus with increasing 

 

Figure 2–1. 

Definition of the 
WARP 4.0 discrete global 
grid. The ‘fix’ function 
denotes decimal trunca-
tion. 
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latitude. Equation 2–2 gives the longitude of the grid points on each of 
the latitude circles: 

 Nji,   ,cos36041 ,
cos

 )5.0(
25.0180

,
∈⋅⋅<≤

−
⋅+−=

j

j

ji
i

i
λ

λ
ϕ  (2–2) 

 
The presented method covers the land surface of the Earth with 

more than 180000 single grid areas. Coastal zones and inland water 
bodies are excluded from the analysis. 

2.2 The Parameter Database 

The structure of parameters required for subsequent retrieval of soil 
moisture and associated with each of the grid points is the following 
(for more details on the role of each parameter, see Wagner (1998)): 

 
LON :  the longitude of the grid point 
LAT :  the latitude of the grid point 
ESD :  the 0σ  estimated standard deviation   
SLO :  a structure containing: 

NAME : the name of the slope periodic function 
C :  the first coefficient of the slope periodic 

function 
D :  the second coefficient of the slope periodic 

function 
PHASE : the third coefficient of the slope periodic 

function 
CURV :  a structure containing: 

NAME : the name of the curvature periodic func-
tion 

C :  the first coefficient of the curvature peri-
odic function 

D :  the second coefficient of the curvature pe-
riodic function 

PHASE : the third coefficient of the curvature peri-
odic function 

NOISE_SLO :  the σε ′  noise 

NOISE_S40 :  the 0
40σ

ε  noise 

DRY :  the dry reference backscatter 
WET :  the wet reference backscatter 
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3 The ESCAT Data 

3.1 Measurement Geometry 

The ESCAT instrument consists of three antennae producing three 
beams looking 45º forward, sideways (90º), and 45º backward with re-
spect to the satellite’s motion direction along the orbit (see Fig. 3–1). 
The measurements from each beam consist of 19 so-called nodes spaced 
25 km apart. As the satellite beams sweep along the earth surface 
yielding an approximately 500 km wide swath, each node produces its 
own 0σ  measurement, integrated over an area around 50 km in diame-
ter. The three measurements originating in the three beams during the 
same satellite overpass are called triplets. 

3.2 Data Format 

At the time of writing the choice of the data format of the ESCAT 
data to be fed into the WARPNRT 1.0 processor is not yet known. Since 
the software package has a demonstrative nature, we believe it is both 
reasonable and sufficient to perform the NRT simulation using ESA’s 
Advanced Scatterometer Processing System (ASPS) product format at 
nominal (50 km) resolution. Data in this format is the result of a com-
plete, state-of-the-art reprocessing of the entire ESCAT dataset with the 
scope of providing the large scientific communities active in novel scat-
terometer applications with high-quality and homogenous scatterometer 
data (Crapolicchio et al. 2004). Ultimately, the WARPNRT 1.0 processor 
should be able to deal with individual inputs of backscatter triplets, the 
only requirement being that the geographical location of the triplet 
(node) and acquisition time is known. 

ASPS data is organised in files containing Level 2 data for each satel-
lite orbit, from ascending orbital node to ascending orbital node. Apart 
from the backscatter triplets for each swath node, the lati-
tude/longitude location of the node and the acquisition time, the data 
comes with several useful flags and control bytes. These can be so-
called Node Confidence Data (NCD, indicating incomplete or corrupt 
acquisitions, lacking Doppler compensation, so-called arcing and cali-
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bration problems, etc.) or Geophysical Product Confidence Data (GPC, 
indicating whether a node falls onto land or ocean, etc.). Evidently, it 
is desirable to use this control data already in the grid-to-orbit resam-
pling phase to find and eliminate nodes with undesired location or with 
erroneous or incomplete 0σ . 

The complete structure of the ASPS data format can be found in 
Crapolicchio et al. (2004) or on the ASPS evaluation CD-ROMs. 

 
 

Figure 3–1. 

Viewing geometry and 
sensor swath of the ESCAT 
scatterometer. 
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4 The Resampling Procedure 

 
As mentioned earlier, the purpose of the present work is to develop 

a method so that for each incoming 0σ  triplet and its corresponding 
swath node 1) we find all the grid points of the parameter database 
within a certain search radius and 2) if there are enough such 
neighbours, their parameter values are interpolated for the location of 
the node in question. 

4.1 Finding Grid Points Closest to a Node 

Because the processing should run in NRT, and given the large num-
ber of grid points, finding the subset of the database structures that 
represent the close spatial neighbourhood of an orbit node location 
must be done in an efficient way. We propose a two-step approach for 
finding the close neighbours of a swath node, tailored to the DGG de-
scribed in Section 2.1: 

 
• Use indexing of the database according to latitude and longi-

tude for finding the n  closest latitude circles on both sides of 
the node in question. Then, going east and west on each of 
these latitude circles, find the n  closest grid points in each 
direction, thus extracting a rectangular-shaped subset of the 
parameter database. 

• Calculate the metric distances (spherical arc lengths) be-
tween these up to nn 22 × points and the node in question. 
Make a final selection of those grid points for which the dis-
tance is less than a certain search radius maxr . 

 
The latitude–longitude indexing of the parameter database could be 

done by reordering it to a two-dimensional array of structures, accord-
ing to which latitude circle and longitude position the corresponding 
grid points are situated at. As discussed previously, at higher latitudes 
there are significantly less parameter structures to store than at the 
Equator. Because neither the C++ or IDL programming languages sup-
port two-dimensional arrays with variable row/column length, a good 
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way to avoid storing a lot of void structures (a fixed array would have 
720×1440 elements) is to keep the parameter structures in a one-
dimensional array and only store the corresponding indices in a 
720×1440 array (see Fig. 4–1). When filling this array with indices, one 
can refer to all grid points without valid parameters (over oceans, etc.) 
with a not-a-number (NaN) index value or an index that is larger than 
the number of elements in the parameter array.  

With this index array, given the latitude and longitude of a swath 
node, finding the neighbouring latitude circles on both the northern 
and southern side of the node is straightforward, by solving Equa-
tion 2–1 for the index j . Similarly, for finding the nearest neighbours 
on a latitude circle, Equation 2–2 has to be solved for the index i . 
Care has to be taken though when trying to find the rectangular 
neighbourhood of locations at the edge or outside the extent of the pa-
rameter grid. In north-south direction, the lowest and highest latitude 
present in the parameter database is -54.875 and 83.625 respectively. 
Allowing for the buffer zones a selection of 3=n  and 36max =r  km (see 
Section 4.2) would create, we can reasonably set the useful node lati-
tude range to ]83,54[− . In order to avoid the introduction of an unus-

able buffer zone on both sides of the 180º meridian (affecting the 
Tchuktchen Peninsula in the Russian far east), a simple but efficient 
workaround is to copy the first few values in each row of the index file 
and insert them towards the end of the row, right after the position 
corresponding to +180º longitude. Similarly, the last few values before 
the +180º position have to be inserted before the beginning of the row. 

Fig. 4–2 shows an example of ASPS ESCAT single orbit data overlaid 
onto the extent of the soil moisture parameter database. Fig. 4–3 is a 
magnification of the previous figure in the region west of Burundi, in 
central Africa. The descending orbit swath runs through the centre of 
the image, while the parameter grid features ‘voids’ in place of lakes 
Tanganyika and Kivu. As an example, a first (most near-range) node is 
highlighted (red asterisk) at the edge of the swath, as well as the rec-
tangular neighbourhood of parameters. Within the rectangular subset, 
a circle with 36 km radius is plotted. The grid points inside the circle 
are selected and constitute the input for the interpolating process dis-
cussed in the next section. 
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4.2 Interpolating the Nearest Parameter Values 

As soon as the grid points within the search radius are returned and 
their number is greater than or equal to a number k  chosen before-
hand, we can proceed by interpolating the various parameter values to 
the swath node location in question. 

However convenient the latitude–longitude indexing of the parame-
ter grid might seem, the DGG used in WARP 4.0 is not at all regularly 
spaced or oriented. The aforementioned decimal truncation phenome-
non (see Section 2.1) creates ‘pattern discontinuities’ between horizon-
tal regions with more homogenous structure. This means that the se-

 

Figure 4–1. 

Indexing of the parameter 
database. 
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lected grid points within the search radius have not only variable dis-
tance to the considered swath node, but their distribution around the 
node can also be uneven. A common way of resampling such irregularly 
distributed data points is the convolution with a so-called apodisation 
(tampering) function. An apodisation function is in general a weighting 
function that creates an average value by assigning more weight to 
points closer to its centre value and less to those further away. A 
common apodisation function used in radar remote sensing is the 
Hamming function (window), described by: 

 

 ,cos46.054.0)( ⎟
⎠
⎞⎜

⎝
⎛+=

a
r

xH
π

 (4–1) 

 
where r  is the distance to the centre of the window and a  is the ra-
dius of the window (Weisstein 2005). For 36=a  km the shape of )(xH  
is shown in Fig. 4–4. Once the grid points within the search radius are 
known, one should obviously choose maxra ≤ . The choice of 

36max == ra  km is justified by the fact that the same size for the 
Hamming window radius is used when resampling the 0σ  measure-
ments to the grid points, yielding a spatial resolution of approximately 
50 km, which matches the original ESCAT data resolution. Additionally, 
it seems to be a good compromise between not decreasing the spatial 
resolution too much while keeping a reliable number of grid points to 
average from: the number of grid points within the search radius varies 
from 0 to 7, with an average of 5.23. Setting the minimum number of 
grid points required for the Hamming filtering to take place to 3=k  is 
thus reasonable. 

Some of the regions over which Hamming filtering will have to take 
place are “convex” or “concave” coastlines and lakeshores, where it 
sure that some points within the search radius have no defined values 
for all parameters. In order to avoid averaging over such regions, a sec-
ond condition is introduced: for the Hamming filtering to take place, 
the number of points with an invalid (NaN, not-a-number) value 
within the search radius should not exceed the number of points with 
valid values.  

Thus, in case of m  valid points within the search radius ( km ≥ ) 
and the number of invalid points less than the number of valid points, 
any Hamming filtered parameter P  is given by: 

 

 

∑

∑

=

=

⋅
= m

i
i

m

i
ii

rH

rHP

P

1

1

)(

)(

. (4–2) 

 
In the contrary case, the value for parameter in question for the pre-
sent node will be assigned a NaN value. 
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It is important to notice that of the input parameters presented in 
Section 2.2 only ESD, NOISE_SLO and NOISE_S40 can be subjected to the 
Hamming function directly, since they are static (independent of acqui-
sition time) and they are used as is in the subsequent processing. The 
weighted and averaged values after the Hamming filtering will be de-
noted ESD , σε ′  and 0

40σ
ε  respectively. 

 The SLO.C, SLO.D, SLO.PHASE are intermediate input parameters for 
various sine-based empirical periodic functions )(tΨ′ . These functions 
characterise the yearly evolution of the slope σ ′  of the backscatter–
incidence angle relationship )(0 θσ . There are approximately one hun-
dred such functions defined in WARP 4.0 and they all accept the same 
number of coefficients (three coefficients and the acquisition time) but 
their type can vary from grid point to grid point (Scipal 2002). The 
type of function is given by the field SLO.NAME. Since the three coeffi-
cients cannot be Hamming windowed directly (they depend on the type 
of )(tΨ′ ), σ ′  slope values have first to be calculated by substitution in 
the periodic function in question for all grid points within the search 
radius, one by one. The formula is: 

 

 ),(),40( tDCt Ψ′⋅′+′=′σ  (4–3) 

 
where C ′ and D ′  are SLO.C and SLO.D, respectively and t  is the time of 
acquisition measured in year fractions. 

The resulting slope values (as many as grid points within the search 
radius) can then be subjected to Hamming filtering, yielding the output 
σ ′ .  

Similarly, the CURV.C, CURV.D and CURV.PHASE parameters are input co-
efficients to sets of empirical periodic functions )(tΨ ′′  describing the 
curvature σ ′′  of the backscatter–incidence angle relationship )(0 θσ . 
The same procedure applies as for the SLO parameters, with the substi-
tution formula: 

 

 ),(),40( tDCt Ψ ′′⋅′′+′′=′′σ  (4–4) 

 
where C ′′ and D ′′  are CURV.C and CURV.D, respectively. The resulting fil-
tered curvature is σ ′′ . 

As far as DRY and WET are concerned, these are annual minimum and 
maximum backscatter values which are used together with the )(tΨ′  
and )(tΨ ′′  sets of functions to calculate the backscatter under dry and 
wet conditions, 0

DRY
σ and 0

WET
σ , respectively. Therefore, 0

DRY
σ and 

0
WET

σ (which are also among the output parameters of the resampling 
procedure) must also be computed separately for each grid point within 
the search radius, using the formulae: 
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and 

 
2

00

)º40()(
2
1

)º40()(),40(

−⋅Ψ ′′⋅′′−

−−⋅Ψ′⋅′−=

WET

WETWETWET

tD

tDCt

θ

θσ
 (4–6) 

 
where 0

DRY
C  and 0

WET
C  are DRY and WET, respectively. The 

DRY
θ  and 

WET
θ  

angles are so-called cross-over angles and in the current implementation 
they are set to 25º and 40º respectively. After applying the Hamming 
function, the resulting averaged reference backscatter values will be 

0

DRY
σ  and 0

WET
σ . 

The final output of the reprocessing algorithm will thus be ESD , 

σε ′ , 0
40σ

ε ,  σ ′ , σ ′′ , 0

DRY
σ  and 0

WET
σ . Some of these variables are meas-

ured in dB. Since the soil moisture retrieval algorithm is entirely based 
on backscatter measured in dB (as opposed to linear values), it is use-
ful to remark that the Hamming function will also be applied directly 
to the dB values. The diagram in Fig. 4–5 gives an overview of the re-
processing algorithm, using the variable names from the C++ program 
code shown in Appendix A. The program uses the standard C++ 
float, math and getopt libraries as well as ph, a proprietary library of 
I.P.F., making handling of arrays and strings more convenient. Resam-
pling the parameters corresponding to one orbit of ESCAT data requires 
a time period in the order of seconds, well in compliance with the NRT 
character of the application. 

Figure 4–6 compares the ESD parameter over the Burundi region, as 
it is contained in the original parameter database and after resampling 
to the orbit geometry. 
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Figure 4–2. 

ESCAT orbit swath and the 
discrete global parameter 
grid locations. 

 

 

Figure 4–3. 

Enlargement of the region 
west of Burundi in 
Fig. 4–2. Notice that one 
of the grid points within 
the search radius holds a 
NaN-value and is thus not 
displayed. 
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Figure 4–4. 

Example of a one-
dimensional Hamming 
window with a = 36 km. 

 

 

Figure 4–5. 

Diagram of the resampling 
procedure. 

��(���)&���
*�	)+��&�+���
�	,�

����������

-���.�����/

	
�����

�0�'���1��!
2���
3������*024%10
(������(�5

��
���
����

����(+����	&�

�����

�	�	�&�
*&�������
*�	)+��&��

�����������

����������
&��&�

������������������	
������
��������������
��������������
��������������
��������������
����������
���
����������
���

1���������2�������

	
����� ��
���
���
��� ���

�
�
����

���� ���
�
�
����

�����
���
�����
���
���
 ��

	
�����!	
�����!�"#������$$%���
	
�����!	
�����!�"#������$$%���%���
	
�����!	
�����!�"#������$$%���%�
	
�����!	
�����!�"#������$$%���%�
	
�����!	
�����!�"#������$$%���%����
	
�����!	
�����!�"#������$$%����%���
	
�����!	
�����!�"#������$$%����%�
	
�����!	
�����!�"#������$$%����%�
	
�����!	
�����!�"#������$$%����%����
	
�����!	
�����!�"#������$$%�����
���
	
�����!	
�����!�"#������$$%�����
���
	
�����!	
�����!�"#������$$%���
	
�����!	
�����!�"#������$$% ��

�	��	�)���(���)&���
*�	)+��&�+���

�	��	�)�0	�(&���
*�	)+��&�+���

	
�����!	
�����!�"#$$

6���	�)�7	���8

0��(&���	�)������

0��(&���	�)�0&�9��&��

2�/���(��(�����

1��	��	(��&�(�	���

�&

7�����(��(�����

 



The Resampling Procedure   
 

15 

    

 
 

 

Figure 4–6. 

The ESD parameter for the 
Burundi area in a) the 
original DGG representa-
tion; b) in the sensor swath 
geometry, after resampling 
with the Hamming window. 

a)

b)
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5 Future Work 

 
After WARPNRT 1.0, which will serve mainly for demonstrative pur-

poses, the ultimate goal of the present project is to develop 
WARPNRT 2.0, which will be based on WARP 5.0 and will use scatterome-
ter data from the ASCAT instrument onboard the upcoming MetOp sat-
ellites. With this in mind, at this point it is useful to give some consid-
erations about the advantages and drawbacks of the DGG used in the 
present report, paving way for several improvements in the coming ver-
sions: 

 
Advantages 

• Simple to implement 
• Fast/efficient retrieving of desired neighbourhoods by lati-

tude–longitude indexing  
 
Drawbacks 

• Inter-point spacing is not constant. Other than the spacing 
in west-east direction, this problem could only be solved par-
tially, even if a completely different DGG using e.g. base 
regular polyhedrons and spatial partitioning was adopted – 
see Sahr et al. (2003). The variable inter-point distance along 
the latitude circles (due to the mentioned decimal trunca-
tion, see Section 2.1) is a side-effect of the fact that grid 
points are continuously distributed around the circumference 
of the latitude circles. It would be desirable to ‘sacrifice’ this 
continuity in favour of equal east-west inter-point spacing for 
all latitude circles. This would imply that the grid point dis-
tribution across a certain meridian would not necessarily be 
continuous. It seems reasonable to choose the 180º meridian 
for this discontinuity, since most of it falls over the ocean. 

• Associating 0σ  measurements within a search radius 
(36 km) to each grid point actually means oversampling the 
data (there will always be an overlap of circular sampling ar-
eas around the grid points). To our understanding, this is 
not a major problem when deriving or interpreting the soil 
moisture data, since processing is based on time series rather 
than images. 
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• The largest drawback in the present implementation is con-
sidered to be the modelling of an ellipsoid by a sphere. 
ESCAT data use the GEM6 (Goddard Earth Model 6) refer-
ence ellipsoid (ESA 1992), with an equatorial Earth radius of 
6378.144 km and a polar Earth radius of 6356.759 km. The 
difference between the ellipsoid-based so-called geodetic lati-
tude and the geocentric (geographic) latitude of the spherical 
model (see Fig. 5–1) is shown in Fig. 5–2 for geographic 
latitudes ranging from 0º to 90º. The largest difference 
occurs at 45º latitude and its value (~0.192º) is compa-
rable to the spacing of the latitude circles of the GCC 

(0.250º). This hints at the necessity to replace the sphere 
with the GEM6 reference ellipsoid for future WARP ver-
sions. 

 

 
 

 

Figure 5–1. 

Different latitude defini-
tions. 
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Figure 5–2. 

Difference between geo-
detic and geocentric lati-
tudes vs. geocentric lati-
tude (in degrees). 
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Appendix A: C++ Program Code 

 
 
 
 
 
//**************************************************************************** 
 
#include <float.h> 
#include <math.h> 
#include <getopt.h> 
#include <ph_strng.hpp> 
#include <ph_vect.hpp> 
#include <ph_opsys.hpp> 
 
#include "pf.hpp" 
 
#ifdef USE_STD_HEADERS 
  #include <strstream> 
  #include <fstream> 
  #include <cassert> 
using namespace std; 
#else 
  #include <assert.h> 
  #ifndef _MSC_VER 
    #include <strstream.h> 
  #else 
    #include <strstrea.h> 
  #endif 
#endif 
 
 
// definition of constants 
const float R =           6370; 
const int   kernelSize =  7; 
const float maxDis =     36.0; 
const float alpha =       0.54f; 
const int   minNrPoints = 3; 
const int NaN = 200000; 
const nbLon = 1452; 
const nbLat = 720; 
const float cross_dry = 25.0; 
const float cross_wet = 40.0; 
 
//**************************************************************************** 
 
// structure for periodic function coefficients 
struct C_pfStruc 
{ 
  char name[ 8 ]; 
  float c, 
        d, 
        phase; 
}; 
 
//**************************************************************************** 
 
// structure for parameter sets 
struct C_parStruc 
{ 
  float lon; 
  float lat; 
  float esd; 
  C_pfStruc slo; 
  C_pfStruc curv; 
  float noise_slo; 
  float noise_s40; 
  float dry; 
  float wet; 
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}; 
 
//**************************************************************************** 
 
// structure of resampled output 
struct C_resampledStruc 
{  
  float esd; 
  float slo; 
  float curv; 
  float sWet; 
  float sDry; 
  float noise_slo; 
  float noise_s40; 
}; 
 
//**************************************************************************** 
 
// return the distance on the sphere with radius R 
// between two positions given in spherical coordinates 
float arcLength( float lon1, float lat1, float lon2, float lat2, float R ) 
{                 
  double temp=  cos( ( lon1 - lon2 ) * pi / 180 ); 
  double cosalpha = temp * cos( lat1*pi/180 ) * cos( lat2*pi/180 )  
                    + sin( lat1*pi/180 ) * sin( lat2*pi/180 ); 
  double alpha = acos( cosalpha ); 
  return (float) (alpha * R); 
}   
 
//**************************************************************************** 
 
// return the sum of the first i_nbItems of vector f_kernel 
float total( float f_kernel[], int i_nbItems ) 
{ 
  float sum = 0; 
  for( int k = 0; k < i_nbItems; k++ ) 
    sum += (f_kernel)[k]; 
  return sum; 
} 
 
//**************************************************************************** 
 
// workaround for missing standard-C++ round function 
int round( float arg ) 
{ 
  if( arg >= 0 ) 
    return (int) (arg+0.5); 
  else 
    return (int) (arg-0.5); 
} 
 
//**************************************************************************** 
 
int round( double arg ) 
{ 
  return round( (float) (arg) ); 
} 
 
//**************************************************************************** 
 
// read in the file containing the parameter index array 
int i_readIndexFile( PH_string C_dbIndFileName, 
                     PH_vector< PH_vector< long > > &C_index ) 
{ 
  ifstream C_inpStream( C_dbIndFileName, ios::binary ); 
  int lat = 0; 
  long val = 0; 
  while( C_inpStream ) 
  { 
    for( int lon = 0; lon < nbLon; lon++ ) 
    { 
      C_inpStream.read( (char*) &val, sizeof( long ) ); 
      if( !C_inpStream ) 
        return 1; 
      C_index[lat][lon] = val; 
    } 
    lat++; 
  } 
  assert( lat == nbLat ); 
  return 1; 
} 
 
//**************************************************************************** 
 
// read in the file containing the data base of parameter structures 
int i_readDataBase( PH_string C_dbFileName, 
                    PH_vector< C_parStruc > &C_inpData ) 
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{ 
  ifstream C_inpStream( C_dbFileName, ios::binary ); 
  int i = 0, 
      sLon =   sizeof( C_inpData[0].lon ), 
      sLat =   sizeof( C_inpData[0].lat ), 
      sEsd =   sizeof( C_inpData[0].esd ), 
      sSloN =  sizeof( C_inpData[0].slo.name ), 
      sSloC =  sizeof( C_inpData[0].slo.c ), 
      sSloD =  sizeof( C_inpData[0].slo.d ), 
      sSloP =  sizeof( C_inpData[0].slo.phase ), 
      sCurvN = sizeof( C_inpData[0].curv.name ), 
      sCurvC = sizeof( C_inpData[0].curv.c ), 
      sCurvD = sizeof( C_inpData[0].curv.d ), 
      sCurvP = sizeof( C_inpData[0].curv.phase ), 
      sNoiseS = sizeof( C_inpData[0].noise_slo ), 
      sNoise4 = sizeof( C_inpData[0].noise_s40 ), 
      sDry =   sizeof( C_inpData[0].dry ), 
      sWet =   sizeof( C_inpData[0].wet ); 
 
  float lon = 0.0; 
  while( C_inpStream ) 
  { 
    if( !( int( C_inpData.u_length() ) >= i) ) 
      C_inpData.u_resize( C_inpData.u_length() + 1 ); 
     
    C_inpStream.read((char *) &lon,                 sLon ); 
    if( C_inpStream ) 
      C_inpData[i].lon = lon; 
    else 
      return 0; 
    C_inpStream.read((char *) &C_inpData[i].lat,        sLat ); 
    C_inpStream.read((char *) &C_inpData[i].esd,        sEsd ); 
    C_inpStream.read(          C_inpData[i].slo.name,   sSloN-1 ); 
      C_inpData[i].slo.name[sSloN]='\0'; 
    C_inpStream.read((char *) &C_inpData[i].slo.c,      sSloC ); 
    C_inpStream.read((char *) &C_inpData[i].slo.d,      sSloD ); 
    C_inpStream.read((char *) &C_inpData[i].slo.phase,  sSloP ); 
    C_inpStream.read(          C_inpData[i].curv.name,  sCurvN-1 ); 
      C_inpData[i].curv.name[sCurvN]='\0'; 
    C_inpStream.read((char *) &C_inpData[i].curv.c,     sCurvC ); 
    C_inpStream.read((char *) &C_inpData[i].curv.d,     sCurvD ); 
    C_inpStream.read((char *) &C_inpData[i].curv.phase, sCurvP ); 
    C_inpStream.read((char *) &C_inpData[i].noise_slo,  sNoiseS ); 
    C_inpStream.read((char *) &C_inpData[i].noise_s40,  sNoise4 ); 
    C_inpStream.read((char *) &C_inpData[i].dry,        sDry ); 
    C_inpStream.read((char *) &C_inpData[i].wet,        sWet ); 
     
    ++i; 
  } 
  return 0; 
} 
 
//**************************************************************************** 
 
// select the right periodic function, according to the input name string 
float pf( PH_string name, float t, float c, float d, float phase ) 
{ 
  int fnNb = atoi( name.C_tail( 4 ) ); 
  float retVal = 0; 
 
  switch( fnNb ) 
  { 
    case 2003: retVal = pf_2003( t, c, d, phase ); break; 
    case 2002: retVal = pf_2002( t, c, d, phase ); break; 
    case 2001: retVal = pf_2001( t, c, d, phase ); break; 
    case 2000: retVal = pf_2000( t, c, d, phase ); break; 
    case 1709: retVal = pf_1709( t, c, d, phase ); break; 
    case 1708: retVal = pf_1708( t, c, d, phase ); break; 
    case 1707: retVal = pf_1707( t, c, d, phase ); break; 
    case 1706: retVal = pf_1706( t, c, d, phase ); break; 
    case 1705: retVal = pf_1705( t, c, d, phase ); break; 
    case 1704: retVal = pf_1704( t, c, d, phase ); break; 
    case 1703: retVal = pf_1703( t, c, d, phase ); break; 
    case 1702: retVal = pf_1702( t, c, d, phase ); break; 
    case 1701: retVal = pf_1701( t, c, d, phase ); break; 
    case 1700: retVal = pf_1700( t, c, d, phase ); break; 
    case 1603: retVal = pf_1603( t, c, d, phase ); break; 
    case 1602: retVal = pf_1602( t, c, d, phase ); break; 
    case 1601: retVal = pf_1601( t, c, d, phase ); break; 
    case 1600: retVal = pf_1600( t, c, d, phase ); break; 
    case 1533: retVal = pf_1533( t, c, d, phase ); break; 
    case 1532: retVal = pf_1532( t, c, d, phase ); break; 
    case 1531: retVal = pf_1531( t, c, d, phase ); break; 
    case 1530: retVal = pf_1530( t, c, d, phase ); break; 
    case 1523: retVal = pf_1523( t, c, d, phase ); break; 
    case 1522: retVal = pf_1522( t, c, d, phase ); break; 
    case 1521: retVal = pf_1521( t, c, d, phase ); break; 
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    case 1520: retVal = pf_1520( t, c, d, phase ); break; 
    case 1516: retVal = pf_1516( t, c, d, phase ); break; 
    case 1515: retVal = pf_1515( t, c, d, phase ); break; 
    case 1514: retVal = pf_1514( t, c, d, phase ); break; 
    case 1513: retVal = pf_1513( t, c, d, phase ); break; 
    case 1512: retVal = pf_1512( t, c, d, phase ); break; 
    case 1511: retVal = pf_1511( t, c, d, phase ); break; 
    case 1510: retVal = pf_1510( t, c, d, phase ); break; 
    case 1503: retVal = pf_1503( t, c, d, phase ); break; 
    case 1502: retVal = pf_1502( t, c, d, phase ); break; 
    case 1501: retVal = pf_1501( t, c, d, phase ); break; 
    case 1500: retVal = pf_1500( t, c, d, phase ); break; 
    case 1404: retVal = pf_1404( t, c, d, phase ); break; 
    case 1403: retVal = pf_1403( t, c, d, phase ); break; 
    case 1402: retVal = pf_1402( t, c, d, phase ); break; 
    case 1401: retVal = pf_1401( t, c, d, phase ); break; 
    case 1400: retVal = pf_1400( t, c, d, phase ); break; 
    case 1312: retVal = pf_1312( t, c, d, phase ); break; 
    case 1311: retVal = pf_1311( t, c, d, phase ); break; 
    case 1310: retVal = pf_1310( t, c, d, phase ); break; 
    case 1309: retVal = pf_1309( t, c, d, phase ); break; 
    case 1308: retVal = pf_1308( t, c, d, phase ); break; 
    case 1307: retVal = pf_1307( t, c, d, phase ); break; 
    case 1306: retVal = pf_1306( t, c, d, phase ); break; 
    case 1305: retVal = pf_1305( t, c, d, phase ); break; 
    case 1304: retVal = pf_1304( t, c, d, phase ); break; 
    case 1303: retVal = pf_1303( t, c, d, phase ); break; 
    case 1302: retVal = pf_1302( t, c, d, phase ); break; 
    case 1301: retVal = pf_1301( t, c, d, phase ); break; 
    case 1300: retVal = pf_1300( t, c, d, phase ); break; 
    case 1200: retVal = pf_1200( t, c, d, phase ); break; 
    case 1112: retVal = pf_1112( t, c, d, phase ); break; 
    case 1110: retVal = pf_1110( t, c, d, phase ); break; 
    case 1109: retVal = pf_1109( t, c, d, phase ); break; 
    case 1108: retVal = pf_1108( t, c, d, phase ); break; 
    case 1107: retVal = pf_1107( t, c, d, phase ); break; 
    case 1106: retVal = pf_1106( t, c, d, phase ); break; 
    case 1105: retVal = pf_1105( t, c, d, phase ); break; 
    case 1104: retVal = pf_1104( t, c, d, phase ); break; 
    case 1103: retVal = pf_1103( t, c, d, phase ); break; 
    case 1102: retVal = pf_1102( t, c, d, phase ); break; 
    case 1100: retVal = pf_1100( t, c, d, phase ); break; 
    case 1101: retVal = pf_1101( t, c, d, phase ); break; 
    case 1000: retVal = pf_1000( t, c, d, phase ); break; 
    case 2004: retVal = pf_2004( t, c, d, phase ); break; 
    case 8102: retVal = pf_8102( t, c, d, phase ); break; 
    case 8101: retVal = pf_8101( t, c, d, phase ); break; 
    case 8100: retVal = pf_8100( t, c, d, phase ); break; 
    case 8000: retVal = pf_8000( t, c, d, phase ); break; 
    case 8109: retVal = pf_8109( t, c, d, phase ); break; 
    case 8103: retVal = pf_8103( t, c, d, phase ); break; 
    case 8104: retVal = pf_8104( t, c, d, phase ); break; 
    case 8105: retVal = pf_8105( t, c, d, phase ); break; 
    case 8106: retVal = pf_8106( t, c, d, phase ); break; 
    case 8107: retVal = pf_8107( t, c, d, phase ); break; 
    case 8108: retVal = pf_8108( t, c, d, phase ); break; 
    default: assert( 0 ); break; 
  } 
  return retVal; 
} 
 
//**************************************************************************** 
 
// resampling proper 
int i_resample( const PH_vector< C_parStruc > &C_inpData, 
                const PH_vector< PH_vector< long > > &C_index, 
                float lat, 
                float lon, 
                float time, 
                C_resampledStruc &C_result ) 
{ 
 
 
  if( lat < -54.0 
      || lat > 83.0  
      || lon < -180.0 
      || lon > 180.0 ) 
    return 1; 
 
 
  long ngb[ kernelSize ][ kernelSize ]; 
 
  // fill the kernel 
  for( int m = -kernelSize / 2; m <= kernelSize / 2; m++ ) 
  { 
    float nLat = float( lat + m * 0.25 ); 
    int latInd = round( ( nLat + 90. ) / 0.25 ); 
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    int giMax = int( nbLon * cos( nLat * pi / 180 ) ); 
    int lonInd = round( giMax * ( lon + 180.) / 360.); 
 
    lonInd += 6; // allow for buffer of 180° +-1.5° in longitude; 
    // index file contains 6 more columns at the left and right hand side 
 
    for( int j = int( - kernelSize / 2 ); j <= int( kernelSize / 2 ); j++ ) 
      ngb[ m + int( kernelSize / 2 ) ] [ j + int( kernelSize / 2) ]  
        = C_index[ latInd ][ j + lonInd ]; 
  } 
 
  int i_nbResultItems = 0; 
  float disResult[ kernelSize*kernelSize ]; 
  long ngbResult  [ kernelSize*kernelSize ]; 
  float dis      [ kernelSize ][ kernelSize ]; 
 
  for( int k = 0; k < kernelSize; k++ ) 
    for( int j = 0; j < kernelSize; j++ ) 
    { 
      if( ngb[k][j] != NaN ) 
        dis[k][j] = arcLength( C_inpData[ ngb[ k ][ j ] ].lon, C_inpData[ ngb[ k ][ j ] ].lat, 
                               float( lon ), float( lat ), R ); 
      else 
        dis[k][j] = 0; 
      if( dis[k][j] >= maxDis ) 
      { 
        disResult[ i_nbResultItems ] = dis[k][j]; 
        ngbResult[ i_nbResultItems ] = ngb[k][j]; 
        i_nbResultItems++; 
      } 
    } 
   
   
  if( i_nbResultItems < minNrPoints ) 
  { 
    cerr << "Too few result items at latitude: " << lat  
         << "° longitude :" << lon << "°" << endl; 
    return 1; 
  } 
 
 
  float weight[ kernelSize*kernelSize ]; // constant value needed for memory allocation 
  for( int k = 0; k < i_nbResultItems; k++ ) 
    weight[ k ] = (float) (alpha+(1-alpha) * cos( pi / maxDis * disResult[ k ] ) ); 
 
  float totalWeight = total( weight, i_nbResultItems ); 
   
  // initialize the structure to return 
  C_result.esd        = 0.0; 
  C_result.slo        = 0.0; 
  C_result.curv       = 0.0; 
  C_result.noise_slo  = 0.0; 
  C_result.noise_s40  = 0.0; 
  C_result.sDry       = 0.0; 
  C_result.sWet       = 0.0; 
 
  for( int k = 0; k < i_nbResultItems; k++ ) 
  { 
    float slo = pf( PH_string( C_inpData[ ngbResult[ k ] ].slo.name ), 
                    time, 
                    C_inpData[ ngbResult[ k ] ].slo.c, 
                    C_inpData[ ngbResult[ k ] ].slo.d, 
                    C_inpData[ ngbResult[ k ] ].slo.phase ); 
 
    float curv = pf( PH_string( C_inpData[ ngbResult[ k ] ].curv.name ), 
                    time, 
                    C_inpData[ ngbResult[ k ] ].curv.c, 
                    C_inpData[ ngbResult[ k ] ].curv.d, 
                    C_inpData[ ngbResult[ k ] ].curv.phase ); 
 
    float sigma_dry = 
      C_inpData[ ngbResult[ k ] ].dry 
        - pf( PH_string( C_inpData[ ngbResult[ k ] ].slo.name ), 
                    time, 
                    0.0, 
                    C_inpData[ ngbResult[ k ] ].slo.d, 
                    C_inpData[ ngbResult[ k ] ].slo.phase ) * ( cross_dry - 40 ) 
        - 0.5 * pf( PH_string( C_inpData[ ngbResult[ k ] ].curv.name ), 
                    time, 
                    0.0, 
                    C_inpData[ ngbResult[ k ] ].curv.d, 
                    C_inpData[ ngbResult[ k ] ].curv.phase ) * pow( cross_dry - 40, 2 ); 
 
    float sigma_wet = 
      C_inpData[ ngbResult[ k ] ].wet 
        - pf( PH_string( C_inpData[ ngbResult[ k ] ].slo.name ), 
                    time, 
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                    0.0, 
                    C_inpData[ ngbResult[ k ] ].slo.d, 
                    C_inpData[ ngbResult[ k ] ].slo.phase ) * ( cross_wet - 40 ) 
        - 0.5 * pf( PH_string( C_inpData[ ngbResult[ k ] ].curv.name ), 
                    time, 
                    0.0, 
                    C_inpData[ ngbResult[ k ] ].curv.d, 
                    C_inpData[ ngbResult[ k ] ].curv.phase ) * pow( cross_wet - 40, 2 ); 
 
    // do the Hamming-weighting 
    C_result.esd        += C_inpData[ ngbResult[ k ] ].esd        * weight[ k ]; 
    C_result.slo        += slo                                    * weight[ k ]; 
    C_result.curv       += curv                                   * weight[ k ]; 
    C_result.sDry       += sigma_dry                              * weight[ k ]; 
    C_result.sWet       += sigma_wet                              * weight[ k ]; 
    C_result.noise_slo  += C_inpData[ ngbResult[ k ] ].noise_slo  * weight[ k ]; 
    C_result.noise_s40  += C_inpData[ ngbResult[ k ] ].noise_s40  * weight[ k ]; 
  } 
  C_result.esd        /= totalWeight; 
  C_result.slo        /= totalWeight; 
  C_result.curv       /= totalWeight; 
  C_result.sWet       /= totalWeight; 
  C_result.sDry       /= totalWeight; 
  C_result.noise_slo  /= totalWeight; 
  C_result.noise_s40  /= totalWeight; 
 
  return 1; 
} 


