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1 Introduction 
Scatterometry 
Spaceborne scatterometers are able to measure the surface wind over the oceans at global coverage with a 
resolution of about 25 km. The surface wind vector is obtained from numerical inversion of the geophysical 
model function (GMF), an empirical relation between wind vector and observation geometry on one hand and 
radar backscatter of the ocean surface on the other [Stoffelen, 1998; Portabella, 2002]. If 𝑛𝑛 observations of the 
radar backscatter are available, each differing from the others in (at least) incidence angle, azimuth angle, radar 
frequency or polarization, then the GMF defines a folded surface of dimension 𝑛𝑛 − 12 in 𝑛𝑛 -dimensional 
measurement space, where wind speed and wind direction vary along the 2-dimensional surface. The measured 
wind vector corresponds to the point on the GMF surface that lies closest to the measurement point. 

Normally, this procedure does not lead to a unique solution, because the measurements are noisy and because 
the GMF surface may fold to itself, for example the upwind and downwind surfaces may be in close proximity 
of each other. For ERS and ASCAT, for instance, the GMF in measurement space takes the form of a folded 
cone with two sheets; the distance between the sheets being smaller than the typical size of the measurement 
error. 

In the multi solution scheme (MSS), the possible solutions are not restricted to those points on the GMF that 
have minimum distance to the measurement point. In the MSS a large number of a priori probable points on 
the GMF is retained, up to 144, and the probability of a certain GMF point being the correct solution is 
proportional to its distance to the measurement point. 

The process of selecting the most probable solution is called ambiguity removal. Several schemes have been 
proposed [Stoffelen, 1998; Portabella, 2002], and a number of schemes is implemented in the genscat library 
of KNMI, which lies at the base of the scatterometer processors for Ku-band systems like SeaWinds, OSCAT, 
RapidScat, and HY-2 (PenWP) and for the C-band systems ASCAT (AWDP) that are developed within the 
NWPSAF project. 

Aims and scope 
This report describes one of the ambiguity removal methods called two-dimensional variational ambiguity 
removal (2DVAR). 2DVAR uses a model prediction (either the NCEP model or the ECMWF model) to 
estimate the best solution. The resulting wind field is constrained by basic physical laws. 

The report is detailed and technical. It is intended for understanding the 2DVAR implementation in genscat 
from the mathematical and methodological point of view. The modules, routines, and data structures are 
described in the user manuals of PenWP and AWDP [Verhoef et al., 2018a,b]. 
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Overview 
Chapter 2 starts with the formulation of the 2DVAR problem. The cost function is introduced as well as the 
grid on which the 2DVAR problem is solved. 

Chapter 3 shows how the background part of the cost function can be transformed such that it becomes a 
diagonal quadratic form. The resulting transformation, called the conditioning transformation, consists of a 
Fourier transformation and a Helmholz transformation of the square root of the background error covariance 
matrix defined in terms of the velocity potential and the stream function in wavenumber space. It greatly 
reduces the numerical load. The use of standard FFT algorithms leads to an efficient implementation. 

The variational problem is solved by numerically minimizing the cost function expressed in terms of the 
velocity potential and the stream function in the frequency domain. The minimization procedure is of a quasi 
Newton type and needs the gradient of the cost function. Chapter 4 shows how the gradient of the cost function 
is obtained using the so-called adjoint model. In terms of linear algebra, the adjoint of a matrix is its Hermitian 
conjugate, i.e., the complex conjugate of its transpose. In chapter 4 the adjoint model for 2DVAR is derived. 

Chapter 5 deals with the subtleties involved in going from the spatial domain to the frequency domain and vice 
versa using FFT algorithms. These are caused by the fact that the wind component fields in the spatial domain 
are real, whereas those in the frequency domain are complex. Symmetry relations keep the number of 
independent field components the same in both representations, but packing of the independent field 
components in the frequency domain into a control vector requires careful bookkeeping that also affects the 
calculation of the cost function and its gradient. 

Chapter 6 describes the error covariance model for the background (model) wind field which determines to a 
large extend the behaviour of 2DVAR. The background error correlations are frequently referred to as structure 
functions. 

Chapter 7 describes how the 2DVAR implementation can be tested with the so-called single observation test. 
This problem can be solved analytically and proved to be of crucial importance for getting the normalizations 
in the genscat 2DVAR implementation right. It is shown how the definition of the structure functions affects 
the 2DVAR analysis. The convergence properties of the numerical minimization are discussed. 

Chapter 8 lists some notes on the 2DVAR implementation in genscat. The report ends with a resume of the 
most important equations defining 2DVAR. Chapter 9 goes deeper into the choices made in selecting the 
structure of the background error correlations. The appendices contain a number of detailed derivations that 
may obscure the main line of reasoning in the text. 

Special thanks to Weicheng Ni for finding an error in the equations of chapter 6. 
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2   Formulation of the problem 
General 
The probability that 𝒙𝒙 expresses the true state of the surface wind field given a vector of possible scatterometer 
wind solutions (ambiguities) 𝒗𝒗𝑜𝑜𝑘𝑘 equals𝑃𝑃(𝒙𝒙 ∩ 𝒗𝒗𝑜𝑜𝑘𝑘). It satisfies [Lorenc, 1986] 

  (2.1) 

where 𝑃𝑃(𝒗𝒗𝑜𝑜𝑘𝑘|𝒙𝒙)  is the conditional probability that the ambiguous scatterometer wind solutions 𝒗𝒗𝑜𝑜𝑘𝑘 are observed 
given the state vector 𝒙𝒙, with 𝑘𝑘 the ambiguity index, and 𝑃𝑃(𝒙𝒙|𝒙𝒙𝑏𝑏) is the conditional probability that 𝒙𝒙 
represents the surface wind field given 𝒙𝒙𝑏𝑏, the prior background information (i.e., a model prediction of the 
wind field). The state vector 𝒙𝒙 is called the analysis. The most likely estimate of 𝒙𝒙 is found by maximizing 
(2.1), or, equivalently, minimizing the cost function 𝐽𝐽 given by 

 𝐽𝐽(𝒗𝒗𝑜𝑜𝑘𝑘 ,𝒙𝒙,𝒙𝒙𝑏𝑏) = −2 𝑙𝑙𝑙𝑙 𝑃𝑃 (𝒗𝒗𝑜𝑜𝑘𝑘|𝒙𝒙)  − 2 𝑙𝑙𝑙𝑙 𝑃𝑃 (𝒙𝒙|𝒙𝒙𝑏𝑏) . (2.2) 

More detailed information on the scatterometry problem can be found in [Stoffelen, 1998] and [Portabella, 
2002]. A description of the 2DVAR method has been given by De Vries et al. [2005] 

Incremental formulation 
To increase the computational efficiency of 2DVAR, the analysis increments 𝛿𝛿𝒙𝒙 are used rather than the state 
vector 𝒙𝒙 itself, with 

 𝛿𝛿𝒙𝒙 = 𝒙𝒙 − 𝒙𝒙𝑏𝑏  , (2.3a) 

and 

 𝛿𝛿𝒗𝒗𝑘𝑘 = 𝒗𝒗𝑜𝑜𝑘𝑘 − 𝒙𝒙𝑏𝑏  . (2.3b) 

This is called the incremental formulation. For each scatterometer observation the background field is assumed 
to be known at the same position and time, if necessary from interpolation. The result is that the 2DVAR 
procedure starts from the model wind field as a first guess. The cost function can be rewritten as 

 𝐽𝐽(𝛿𝛿𝒗𝒗𝑘𝑘 , 𝛿𝛿𝒙𝒙) = 𝐽𝐽𝑜𝑜(𝛿𝛿𝒗𝒗𝑘𝑘 , 𝛿𝛿𝒙𝒙) + 𝐽𝐽𝑏𝑏(𝛿𝛿𝒙𝒙) , (2.4) 

with 𝐽𝐽𝑜𝑜 the observational term and 𝐽𝐽𝑏𝑏 the background term. 

Packing 
The analysis wind field in 2DVAR is calculated on a regular grid which encompasses all observations. The 
analysis wind components are packed in the state vector 𝒙𝒙 (or 𝛿𝛿𝒙𝒙 in the incremental approach) which is used 
in the minimization procedure. In that context, the state vector is also referred to as the control vector. Suppose 
the 2DVAR analysis grid is defined as 

 (𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖) ,  𝑖𝑖 = 1,2, . . . ,𝑁𝑁1 ,  𝑗𝑗 = 1,2, . . . ,𝑁𝑁2 , (2.5) 

,)()()( b
k
o

k
o PPP xxxvvx ∝
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with 𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 the coordinates of the grid point with indices i and j. The analysis or control vectors 𝒙𝒙 and 𝛿𝛿𝒙𝒙 have 
2𝑁𝑁1𝑁𝑁2 components that are ordered as indicated in figure 2.1, with 

 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) ,  𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) , (2.6a) 

 𝛿𝛿𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢(𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖) − 𝑢𝑢𝑏𝑏(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) ,  𝛿𝛿𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) − 𝑣𝑣𝑏𝑏(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) , (2.6b) 

where (𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖𝑖𝑖) is the analysis field and (𝛿𝛿𝑢𝑢𝑖𝑖𝑖𝑖 , 𝛿𝛿𝑣𝑣𝑖𝑖𝑖𝑖) the incremental analysis field. 

 

𝜆𝜆 1 2 … 𝑁𝑁1𝑁𝑁2 𝑁𝑁1𝑁𝑁2 + 1 … 2𝑁𝑁1𝑁𝑁2 

𝒙𝒙𝜆𝜆 𝑢𝑢11 𝑢𝑢12 … 𝑢𝑢𝑁𝑁1𝑁𝑁2 𝑣𝑣11 … 𝑣𝑣𝑁𝑁1𝑁𝑁2 

𝛿𝛿𝒙𝒙𝜆𝜆 𝛿𝛿𝑢𝑢11 𝛿𝛿𝑢𝑢12 … 𝛿𝛿𝑢𝑢𝑁𝑁1𝑁𝑁2 𝛿𝛿𝑣𝑣11 … 𝛿𝛿𝑣𝑣𝑁𝑁1𝑁𝑁2 

Figure 2.1   Packing of the velocity field variables into control vectors. 

 

The order of the elements in the control vector is not relevant for the minimization procedure itself, but it will 
help to facilitate the derivation in the next sections. Note that the wind fields are packed according to their 
component and not according to their position. 

The background term 
Assuming that the errors in the background wind field are Gaussian 

 𝑃𝑃(𝛿𝛿𝒙𝒙) ∝ 𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2

(𝛿𝛿𝒙𝒙)𝑇𝑇𝑩𝑩−1(𝛿𝛿𝒙𝒙)� , (2.7) 

with 𝑩𝑩 the matrix of background wind error covariances and the superscript 𝑇𝑇 indicating that the transpose of 
the vector or matrix should be taken. This yields 

 𝐽𝐽𝑏𝑏(𝛿𝛿𝒙𝒙) = (𝛿𝛿𝒙𝒙)𝑇𝑇𝑩𝑩−1(𝛿𝛿𝒙𝒙) + 𝐶𝐶 , (2.8) 

with 𝐶𝐶 a constant that may be neglected during minimization. Note that taking the transpose suffices since 𝛿𝛿𝒙𝒙 
is a real vector. In the general case the Hermitian conjugate (complex conjugate of the transpose) should be 
taken. 

In terms of the unpacked velocity fields, the background term of the cost function reads 

 𝐽𝐽𝑏𝑏 = ∑ 𝐵𝐵𝑖𝑖𝑖𝑖−1(𝛿𝛿𝑢𝑢𝑖𝑖𝑖𝑖2 + 𝛿𝛿𝑣𝑣𝑖𝑖𝑖𝑖2 )𝑁𝑁1,𝑁𝑁2
𝑖𝑖,𝑗𝑗=1  . (2.9) 

This equation holds if the background field is considered as a discrete quantity on a grid. If it is considered as 
a continuous field, the background cost function reads 

 𝐽𝐽𝑏𝑏 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ∫ ∫ 𝑑𝑑𝑥𝑥 ′𝑑𝑑𝑦𝑦′ �𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦)𝐵𝐵−1(𝑥𝑥,𝑦𝑦, 𝑥𝑥 ′,𝑦𝑦′)𝛿𝛿𝛿𝛿(𝑥𝑥 ′,𝑦𝑦′)∞
−∞

∞
−∞

∞
−∞

∞
−∞ + 

                                       +𝛿𝛿𝛿𝛿(𝑥𝑥,𝑦𝑦)𝐵𝐵−1(𝑥𝑥,𝑦𝑦, 𝑥𝑥 ′,𝑦𝑦′)𝛿𝛿𝛿𝛿(𝑥𝑥 ′,𝑦𝑦′)� . (2.10) 



  

Two-dimensional variational 
ambiguity removal (2DVAR) 

Doc ID : NWPSAF-KN-TR-004 
Version : 1.8 
Date : 01-06-2022 

 

 

 

 9  

In 2DVAR the second point of view is taken, assuming that all quantities are sampled on a grid that is large 
and dense enough to assure convergence of the integrals. 

The observational term 
The observational term in 2DVAR is most easily expressed in terms of the orthogonal components of the 
horizontal wind vector fields. It reads [Stoffelen and Anderson, 1997] 

 𝑃𝑃(𝒗𝒗0𝑘𝑘|𝒙𝒙) ∝ ∑ 𝑝𝑝𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

(𝛿𝛿𝒗𝒗𝑘𝑘)𝑇𝑇(𝑶𝑶 + 𝑭𝑭)−1(𝛿𝛿𝒗𝒗𝑘𝑘)�𝑘𝑘  , (2.11) 

where the summation extends over all possible solutions (ambiguities). In (2.11), 𝑶𝑶 stands for the covariance 
of the observation errors and 𝑭𝑭 for that of the representation errors (errors caused by spatial and temporal 
differences between observation and background). The probability of ambiguity number 𝑘𝑘 being the correct 
solution is given by 𝑝𝑝𝑘𝑘.  

The observation cost function in terms of the unpacked wind velocities reads 

 𝐽𝐽𝑜𝑜 = ∑ �∑ �
�𝛿𝛿𝑢𝑢�𝑚𝑚−𝛿𝛿𝑢𝑢𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑢𝑢2
+

�𝛿𝛿𝑣𝑣�𝑚𝑚−𝛿𝛿𝑣𝑣𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑣𝑣2
− 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝
𝑀𝑀𝑙𝑙
𝑘𝑘=1 �

−1/𝑝𝑝
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚=1  , (2.12) 

where the summation is over all 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 observations and all 𝑀𝑀𝑚𝑚 ambiguities of observation 𝑚𝑚. Equation (2.12) 
applies in particular to scatterometer observations which in general have 𝑀𝑀𝑚𝑚 ambiguous solutions, each with 
a-priori probability 𝑃𝑃𝑘𝑘. Further, 𝜀𝜀𝑢𝑢 and 𝜀𝜀𝑣𝑣 are the expected standard deviation of the scatterometer wind 
components. For all scatterometers 𝜀𝜀𝑢𝑢 = 𝜀𝜀𝑣𝑣 =1.8 m/s. The parameter 𝑝𝑝 is an empirical parameter that gives 
optimal separation between multiple solutions for 𝑝𝑝 = 4. The analysis increment wind components 𝛿𝛿𝑢𝑢�𝑚𝑚 and 
𝛿𝛿𝑣̅𝑣𝑚𝑚 are interpolated to the position of the observation, the interpolation being indicated by the bar. That is 
why all observations should be contained in the 2DVAR analysis grid with positions (𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖) as defined in 
(2.5). 

Note that if there is only one single observation present with unit probability, (2.12) reduces to 

 𝐽𝐽𝑜𝑜𝑆𝑆𝑆𝑆 =
�𝛿𝛿𝑢𝑢1−𝛿𝛿𝑢𝑢1,1

(𝑜𝑜)�
2

𝜀𝜀𝑢𝑢2
+

�𝛿𝛿𝑣𝑣1−𝛿𝛿𝑣𝑣1,1
(𝑜𝑜)�

2

𝜀𝜀𝑣𝑣2
 . (2.13) 

The 2DVAR analysis grid  
The wind speed vector components are usually given as the west-to-east (zonal) component 𝑢𝑢 and the south-
to-north (meridional) component 𝑣𝑣. 2DVAR uses the transversal wind speed 𝑡𝑡, perpendicular to the satellite 
track, and the longitudinal wind speed 𝑙𝑙, parallel to the satellite track. They are related to 𝑢𝑢 and 𝑣𝑣 by  

 
𝑡𝑡 = 𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖𝑖𝑖
𝑙𝑙 = −𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑖𝑖

 , (2.14) 
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where 𝜃𝜃𝑖𝑖𝑖𝑖 is the orientation of the wind vector cell (WVC) with indices (𝑖𝑖, 𝑗𝑗), measured counterclockwise from 
the north. It varies continuously from WVC to WVC, slowly near the equator and more rapidly near the poles. 
Vogelzang [2006] compares various methods to obtain the orientation of a WVC given its coordinates. 

Since the relation between (𝑢𝑢, 𝑣𝑣) and (𝑡𝑡, 𝑙𝑙) is an ordinary rotation, the cost function does not change value or 
form under this change of variables. Note that 𝑡𝑡 and 𝑙𝑙 have the same role in the 2DVAR batch grid as 𝑢𝑢 and 𝑣𝑣 
in a geographical grid. Therefore, the transversal and longitudinal wind speed components are often referred 
to as 𝑢𝑢 and 𝑣𝑣 in the 2DVAR software. 

The 2DVAR analysis grid, also referred to as the 2DVAR batch grid since the scatterometer observations are 
split in so-called batches that span at most one-sixth of an orbit, is more or less aligned with the satellite orbit. 
It is constructed as follows: 

1. The center point of the first row of observations, 𝒄𝒄1 and that of the last row of observations, 𝒄𝒄2 is calculated. 

2. A great circle 𝐶𝐶12 is defined through 𝒄𝒄1 and 𝒄𝒄2. This is the backbone of the grid. 

3. The grid points are defined on great circles perpendicular to the backbone 𝐶𝐶12. The grid is also extended 
before 𝒄𝒄1 and after 𝒄𝒄2 in order to make the grid large enough. 

See Vogelzang [2019] for more details. 



  

Two-dimensional variational 
ambiguity removal (2DVAR) 

Doc ID : NWPSAF-KN-TR-004 
Version : 1.8 
Date : 01-06-2022 

 

 

 

 11  

3 Transformation of the cost function 
Overview 
Equations (2.10) and (2.12) completely specify the background and observational part of the cost function, 
respectively. Both equations are assumed to be formulated in terms of the transversal and longitudinal wind 
components (𝑡𝑡, 𝑙𝑙). The total cost function can be calculated once a form for the background wind covariance 
matrix 𝑩𝑩 and an efficient way to compute its inverse 𝑩𝑩−1 are established. This can be achieved by a series of 
transformations: 

 Fourier transformation of the wind field from the spatial domain to the frequency domain; 
 Helmholtz transformation from wind fields to potential fields in the frequency domain; 
 Normalization with the error covariances (error variances and error autocorrelations). 

These three transformations together are called the preconditioning transformation. Its effect is to transform 𝑩𝑩 
expressed in terms of the wind components (𝑡𝑡, 𝑙𝑙) in the spatial domain into the identity matrix in terms of the 
normalized potential fields (𝜒̂𝜒(𝑛𝑛),𝜓𝜓�(𝑛𝑛))in the frequency domain. 

The wind error covariances are calculated from the wind vectors at two points. Following Daley [1991] it is 
assumed that the covariances are homogeneous (i.e., independent of the absolute location of the pair of points) 
and isotropic (i.e., only dependent on the distance between the points). In that case the matrix 𝑩𝑩 is symmetric 
and positive definite, so its inverse certainly exists. With ⟨. . ⟩ denoting the wind error covariance, the matrix 
𝑩𝑩 can be written in terms of the wind components in the spatial domain as 

 𝑩𝑩𝑡𝑡,𝑙𝑙 = �⟨𝛿𝛿𝛿𝛿, 𝛿𝛿𝑡𝑡
𝑇𝑇⟩ ⟨𝛿𝛿𝛿𝛿, 𝛿𝛿𝑙𝑙𝑇𝑇⟩

⟨𝛿𝛿𝛿𝛿, 𝛿𝛿𝑡𝑡𝑇𝑇⟩ ⟨𝛿𝛿𝛿𝛿, 𝛿𝛿𝑙𝑙𝑇𝑇⟩
� = �𝐵𝐵𝑡𝑡𝑡𝑡 𝐵𝐵𝑡𝑡𝑡𝑡

𝐵𝐵𝑙𝑙𝑙𝑙 𝐵𝐵𝑙𝑙𝑙𝑙
� . (3.1) 

The background contribution to the cost function reads, see (2.8) 

 𝐽𝐽𝑏𝑏 = 𝛿𝛿𝒙𝒙𝑇𝑇𝑩𝑩𝑡𝑡,𝑙𝑙
−1𝛿𝛿𝒙𝒙 , (3.2) 

which can be interpreted as a summation like in (2.9) or an integration like in (2.10) 

Fourier transformation 
The first step in the preconditioning is to go from the spatial domain to the frequency domain by Fourier 
transformation (denoted by𝐹𝐹). This transforms the matrix-vector multiplications from convolutional form to 
ordinary multiplication form. The transformation reads 𝛿𝛿𝑡̂𝑡 = 𝐹𝐹𝐹𝐹𝐹𝐹 and𝛿𝛿𝑙𝑙 = 𝐹𝐹𝐹𝐹𝐹𝐹, the hat indicating that the 
quantity is in the frequency domain. On a regular grid with grid size 𝛥𝛥𝛥𝛥 in the position domain and grid size 
𝛥𝛥𝛥𝛥 = (𝑁𝑁𝑁𝑁𝑁𝑁)−1 in the frequency domain, with 𝑁𝑁 the number of grid points, the discrete Fourier transformation 
and its inverse of a function 𝑓𝑓in two dimensions read [Press et al, 1988] 

 𝑓𝑓𝑘𝑘,𝑙𝑙 = 𝛥𝛥2 ∑ ∑ 𝑓𝑓𝑚𝑚,𝑛𝑛𝑒𝑒
2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁

𝑛𝑛=1
𝑀𝑀
𝑚𝑚=1  , (3.3a) 
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 𝑓𝑓𝑚𝑚,𝑛𝑛 = 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝑓𝑓𝑘𝑘,𝑙𝑙𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁

𝑙𝑙=1
𝑀𝑀
𝑘𝑘=1  , (3.3b) 

where 𝛥𝛥 = 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥. Note that the normalization factor for the inverse transform equals the grid sizes in 
frequency space. See appendix A for more detailed information on the Fourier transform. 

After Fourier transformation, the background contribution to the cost function reads 

 𝐽𝐽𝑏𝑏 = 𝛿𝛿𝒙𝒙�𝑇𝑇𝑩𝑩𝑡̂𝑡,𝑙𝑙
−1𝛿𝛿𝒙𝒙� , (3.4) 

with 𝛿𝛿𝒙𝒙� the control vector in the frequency domain. 

Helmholtz transformation 
The second step is to express the wind speed increments (𝛿𝛿𝑡̂𝑡, 𝛿𝛿𝑙𝑙) in the frequency domain in terms of the 
velocity potential and the stream function (𝛿𝛿𝜒̂𝜒, 𝛿𝛿𝜓𝜓�) by using the inverse transformation. 

The forward operator 𝑯𝑯 = (𝐻𝐻1,𝐻𝐻2) for continuous functions in the spatial domain reads 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 , (3.5a) 

 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 𝐻𝐻2[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 , (3.5b) 

with the square brackets indicating a function as argument of an operator. Note that the forward transformation 
transforms potentials into horizontal wind components, while the inverse transformation transforms horizontal 
wind components into potentials. In appendix B it is shown that the forward transformation in the frequency 
domain reads 

 𝑡̂𝑡(𝑝𝑝, 𝑞𝑞) = ℎ�(𝑝𝑝)𝜒̂𝜒(𝑝𝑝, 𝑞𝑞) − ℎ�(𝑞𝑞)𝜓𝜓�(𝑝𝑝, 𝑞𝑞) . (3.6a) 

 𝑙𝑙(𝑝𝑝, 𝑞𝑞) = ℎ�(𝑞𝑞)𝜒̂𝜒(𝑝𝑝, 𝑞𝑞) + ℎ�(𝑝𝑝)𝜓𝜓�(𝑝𝑝, 𝑞𝑞) . (3.6b) 

with 

 ℎ�(𝑝𝑝) = −2𝜋𝜋𝜋𝜋𝜋𝜋 . (3.7) 

It will be shown later that 2DVAR only needs the forward transformation and its complex conjugate, but 
expressed on a discrete grid. Equations (3.6) and (3.7) are immediately discretized to 

 𝑡̂𝑡𝑚𝑚,𝑛𝑛 = −2𝜋𝜋𝜋𝜋�𝑝̂𝑝𝑚𝑚𝜒̂𝜒𝑚𝑚,𝑛𝑛 − 𝑞𝑞�𝑛𝑛𝜓𝜓�𝑚𝑚,𝑛𝑛� , (3.8a) 

 𝑙𝑙𝑚𝑚,𝑛𝑛 = −2𝜋𝜋𝜋𝜋�𝑞𝑞�𝑛𝑛𝜒̂𝜒𝑚𝑚,𝑛𝑛 + 𝑝̂𝑝𝑚𝑚𝜓𝜓�𝑚𝑚,𝑛𝑛� , (3.8b) 

with 

 𝑝𝑝𝑚𝑚 = 𝑚𝑚
𝑁𝑁1𝛥𝛥

 ,  𝑞𝑞𝑛𝑛 = 𝑛𝑛
𝑁𝑁2𝛥𝛥

 , (3.9) 

the spatial frequencies resulting from the discrete Fourier transformation. 
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Definition of the background error covariance matrix 
After the inverse Helmholz transformation, the background contribution to the cost function is given by 

 𝐽𝐽𝑏𝑏 = 𝛿𝛿𝝃𝝃𝑇𝑇𝐵𝐵𝜓𝜓� ,𝜒𝜒�
−1 𝛿𝛿𝝃𝝃 , (3.10) 

with 𝛿𝛿𝝃𝝃 the control vector in terms of the velocity potential and the stream function in the frequency domain. 
The error covariance matrix given by 

 𝑩𝑩𝜒𝜒� ,𝜓𝜓� = �
⟨𝛿𝛿𝝌𝝌�, 𝛿𝛿𝝌𝝌�𝑇𝑇⟩ �𝛿𝛿𝝌𝝌�, 𝛿𝛿𝝍𝝍�𝑇𝑇�
�𝛿𝛿𝝍𝝍� , 𝛿𝛿𝝌𝝌�𝑇𝑇� �𝛿𝛿𝝍𝝍� , 𝛿𝛿𝝍𝝍�𝑇𝑇�

� = �
𝐵𝐵𝜒𝜒�𝜒𝜒� 𝐵𝐵𝜒𝜒�𝜓𝜓�
𝐵𝐵𝜓𝜓�𝜒𝜒� 𝐵𝐵𝜓𝜓�𝜓𝜓�

� . (3.11) 

The advantage of applying these transformations is that the cross covariances in 𝑩𝑩, the ones between 𝛿𝛿𝒖𝒖 and𝛿𝛿𝒗𝒗, 
that are not negligible in terms of the horizontal wind components in the spatial domain become almost zero,  

 𝑩𝑩𝜒𝜒� ,𝜓𝜓� ≈ �
𝐵𝐵𝜒𝜒�𝜒𝜒� 0

0 𝐵𝐵𝜓𝜓�𝜓𝜓�
� . (3.12) 

Now, the matrix has become diagonal. The last step is to factorize it into error variances 𝜮𝜮 and error correlations 
𝜞𝜞 by 

 𝑩𝑩𝜒𝜒� ,𝜓𝜓� = 𝜮𝜮𝜮𝜮𝜮𝜮 , (3.13) 

with 

 𝜮𝜮 = �
𝛴𝛴𝜒𝜒� 0
0 𝛴𝛴𝜓𝜓�

�  ,  𝜞𝜞 = �
𝛤𝛤𝜒𝜒�𝜒𝜒� 0

0 𝛤𝛤𝜓𝜓�𝜓𝜓�
� . (3.14) 

The stream function and the velocity potential are not observable quantities, but their error variances and error 
correlations can be derived from the wind field, either from theory or from measurements (or a combination 
of the two). See section 6 for more information. 

Once the matrix is diagonal, it is inverted easily: the inverse matrix is also diagonal and each diagonal element 
in the inverse matrix is the inverse of the corresponding element in the original matrix. Also, the square root 
of a diagonal matrix can easily be found: it is a diagonal matrix in which each diagonal element equals the 
square root of the original element. The background contribution to the cost function finally reads 

 𝐽𝐽𝑏𝑏 = 𝛿𝛿𝝃𝝃�𝑇𝑇𝑩𝑩𝜒𝜒� ,𝜓𝜓�
−1 𝛿𝛿𝝃𝝃 = 𝛿𝛿𝝃𝝃�𝑇𝑇𝑩𝑩𝜒𝜒� ,𝜓𝜓�

−1/2𝑩𝑩𝜒𝜒� ,𝜓𝜓�
−1/2𝛿𝛿𝝃𝝃� . (3.15) 

In the original formulation in the spatial domain, equation (2.8) evaluation of the cost function would require 
a full matrix-vector multiplication, whereas in the frequency domain only multiplication with the diagonal 
components is required (convolutional form). Therefore, this step is also referred to as convolution. 

Preconditioning and unconditioning transformation 
The transformations can be combined to the so-called preconditioning transformation 

 𝝃𝝃 = 𝑩𝑩𝜒𝜒� ,𝜓𝜓�
−1/2𝑯𝑯−1𝐹𝐹𝐹𝐹𝒙𝒙 = 𝑪𝑪𝛿𝛿𝒙𝒙 ,  (3.16) 
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where 𝝃𝝃 is the preconditioned state vector. It is obtained from packing the increments in the potential fields in 
the frequency domain, normalized with the square root of the error variances and error correlations. This is the 
state vector actually used in the 2DVAR minimization process, and therefore the inverse of (3.16) is needed 
in 2DVAR. This is called the unconditioning transformation 𝑼𝑼 and it satisfies 

 𝛿𝛿𝒙𝒙 = 𝐹𝐹−1𝑯𝑯𝑩𝑩𝜒𝜒� ,𝜓𝜓�
1/2𝝃𝝃 = 𝑼𝑼𝑼𝑼 . (3.17) 

Figure 3.1 shows the unconditioning transformation schematically. 

 

Frequency domain  Spatial domain 
Control 
vectors  Fields  Fields  Control 

vectors 

𝝃𝝃  unpack 
�⎯⎯⎯⎯⎯⎯� (𝛿𝛿𝜒̂𝜒(𝑛𝑛), 𝛿𝛿𝜓𝜓�(𝑛𝑛))    

⇐ Normalized 

potentials 
  ↓ 𝑩𝑩𝜒𝜒� ,𝜓𝜓�

−1/2 ↓     

Potentials ⇒  (𝛿𝛿𝜒̂𝜒, 𝛿𝛿𝜓𝜓�)    ⇐ Potentials 

  ↓ 𝐻𝐻 ↓     
Rotated ⇒ 

wind speeds 
 (𝛿𝛿𝒕𝒕�, 𝛿𝛿𝒍̂𝒍)  𝐹𝐹-1 

�⎯⎯⎯� (𝛿𝛿𝒕𝒕, 𝛿𝛿𝒍𝒍)  
⇐ Rotated 

wind speeds 
    ↓ 𝑹𝑹−1 ↓   

EW/NS ⇒ 

wind speeds 
   (𝛿𝛿𝒖𝒖, 𝛿𝛿𝒗𝒗)  𝛿𝛿𝒙𝒙 

Figure 3.1   Scheme of the unconditioning transformation (the yellow path). 

 
The preconditioning transformation reduces the background error covariance matrix to the identity matrix, so 
the background cost function is expected to become simply the scalar product of the conditioned control vector 
with itself. In chapter 5 it will be shown that there are some subtleties involved due to the nature of the 
numerically calculated Fourier transform. The final form of the background cost function equals 

 𝐽𝐽𝑏𝑏 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 ∑ 𝑤𝑤𝜆𝜆𝜉𝜉𝜆𝜆2𝜆𝜆  , (3.18) 

with the index 𝜆𝜆 running over all components of the control vector and the weights 𝑤𝑤𝜆𝜆 determined by the 
symmetry properties of the Fourier transform (see chapter 5). 

The origin of the normalization factor in front of the summation in (3.18) can be understood by writing the 
background cost function in terms of the normalized potential fields in the frequency domain, 𝜓𝜓�(𝑛𝑛) and 𝜒̂𝜒(𝑛𝑛), 
as 
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 𝐽𝐽𝑏𝑏 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞  [𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞)]2 + [𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞)]2 .∞

−∞  (3.19) 

If (3.19) is evaluated on a regular grid using first-order quadrature (higher order is not necessary since the FFT 
algorithm used for the Fourier transformation is also first-order) one obtains 

 𝐽𝐽𝑏𝑏 = ∑ 𝛥𝛥𝑁𝑁
𝑖𝑖=1 𝑝𝑝∑ 𝛥𝛥𝑀𝑀

𝑗𝑗=1 𝑞𝑞[𝜓𝜓�(𝑛𝑛)(𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗)]2 + [𝜒̂𝜒(𝑛𝑛)(𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗)]2 , (3.20) 

where the factor 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 can be moved in front of the summation. See also chapter 5. 

The observation term remains the same,  

 𝐽𝐽𝑜𝑜 = ∑ �∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑛𝑛 𝑃𝑃𝑘𝑘�

−𝑝𝑝
𝑀𝑀𝑙𝑙
𝑘𝑘=1 �

−1/𝑝𝑝
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚=1  , (3.21) 

with 𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑙𝑙 = 1.8 m/s and the bar indicating interpolation of the analysis wind components to the position 
of the observation. 

The horizontal wind component increments in the spatial domain, 𝛿𝛿𝑡𝑡𝑚̅𝑚 and 𝛿𝛿𝑙𝑙𝑚̅𝑚 are obtained from unpacking, 
unconditioning, and interpolating the control vector 𝝃𝝃. In this way, all transformations are contained in the 
background part of the cost function. 
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4   Gradient of the cost function 
The minimization is done using routine LBFGS from J. Nocedal [Liu and Nocedal, 1989]. This is a freeware 
routine for minimization using the limited memory BFGS method. The routine not only needs the value of the 
cost function for arbitrary values of the control vector, but also its gradient with respect to the control vector. 

The background term 
The background contribution to the cost function is given by (3.18) and reads 

 𝐽𝐽𝑏𝑏 = 𝛥𝛥𝑝𝑝𝛥𝛥𝑞𝑞 ∑ 𝑤𝑤𝜆𝜆𝜉𝜉𝜆𝜆2𝜆𝜆  . (4.1) 

This can be considered as a summation or an integral, see (3.19). Its gradient with respect to the control vector 
is simply 

 𝛻𝛻𝐽𝐽𝑏𝑏|𝜆𝜆 = 𝜕𝜕𝐽𝐽𝑏𝑏
𝜕𝜕𝝃𝝃𝜆𝜆

= 2𝛥𝛥𝑝𝑝𝛥𝛥𝑞𝑞𝑤𝑤𝜆𝜆𝜉𝜉𝜆𝜆 , (4.2) 

which is a vector in preconditioned control vector space. Section 5 addresses the question how to express (4.1) 
and (4.2) in terms of the normalized potential fields in the frequency domain. 

The observation term 
The observation contribution to the gradient is 

 𝛻𝛻𝐽𝐽𝑜𝑜 = 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝝃𝝃

 , (4.3) 

which is again a vector in preconditioned control vector space, i.e., the control vector in terms of the normalized 
potential fields in the frequency domain. This must be transformed to an expression in terms of the velocity 
fields in the spatial domain (ordinary control vector space), because the observation source term is defined in 
that representation. In matrix-vector notation this can be written as (see appendix D) 

 𝛻𝛻𝐽𝐽𝑜𝑜 = 𝑼𝑼∗ 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝜕𝜕𝒙𝒙

 , (4.4) 

where 𝑼𝑼∗ is the adjoint of the preconditioning transformation 𝑼𝑼 defined in (3.17), i.e., the complex conjugate 
of the transpose of 𝑼𝑼. In appendix D it is also shown that 

 𝑼𝑼∗ = 𝑼𝑼𝑇𝑇 = �𝐹𝐹−1𝑯𝑯𝑩𝑩𝜒𝜒� ,𝜓𝜓�
1/2�

𝑇𝑇
= 𝑩𝑩𝜒𝜒� ,𝜓𝜓�

1/2𝑯𝑯∗𝐹𝐹 , (4.5) 

since the Fourier transform is self-adjoint and the background error correlations are real. 

The derivatives of 𝐽𝐽𝑜𝑜 in the spatial domain are easily obtained from (3.20). Writing 

 𝐽𝐽𝑜𝑜 = ∑ 𝐽𝐽𝑠𝑠
−1/𝑝𝑝 ,  𝐽𝐽𝑠𝑠 = ∑ �

�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝
𝑀𝑀𝑖𝑖𝑖𝑖
𝑚𝑚=1  ,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚=1  (4.6) 

the components of the gradient in the spatial domain equal 
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𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= −1
𝑝𝑝
𝐽𝐽𝑠𝑠
−1−1/𝑝𝑝 𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚
 ,    𝜕𝜕𝐽𝐽𝑜𝑜

𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚
= 𝜕𝜕𝐽𝐽𝑜𝑜

𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚

= −1
𝑝𝑝
𝐽𝐽𝑠𝑠
−1−1/𝑝𝑝 𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚
 , (4.7) 

with 

 𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= −𝑝𝑝∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝−1
2�𝛿𝛿𝑡𝑡̅𝑚𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �

𝜀𝜀𝑡𝑡2
𝑀𝑀𝑚𝑚
𝑘𝑘=1  , 

 𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚

= −𝑝𝑝∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝−1
2�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘

(𝑜𝑜) �

𝜀𝜀𝑙𝑙
2

𝑀𝑀𝑚𝑚
𝑘𝑘=1  . (4.8) 

Note that the factors −𝑝𝑝−1 and −𝑝𝑝 in (4.7) and (4.8) cancel. The gradient with respect to the control variables 
of the observation term is thus obtained by adjoint preconditioning of the gradient in the analysis field in the 
spatial domain. 

In case of one single observation with unit probability, equations (4.6) and (4.7) simplify to 

 𝐽𝐽𝑜𝑜𝑆𝑆𝑆𝑆 =
�𝛿𝛿𝑡𝑡1̅−𝛿𝛿𝑡𝑡1,1

(𝑜𝑜)�
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙1̅−𝛿𝛿𝑙𝑙1,1
(𝑜𝑜)�

2

𝜀𝜀𝑙𝑙
2  , (4.9) 

 𝜕𝜕𝐽𝐽𝑜𝑜𝑆𝑆𝑆𝑆

𝜕𝜕𝜕𝜕𝑡𝑡1̅
=

2�𝛿𝛿𝑡𝑡1̅−𝛿𝛿𝑡𝑡1,1
(𝑜𝑜)�

𝜀𝜀𝑡𝑡2
 ,  𝜕𝜕𝐽𝐽𝑜𝑜𝑆𝑆𝑆𝑆

𝜕𝜕𝜕𝜕𝑙𝑙1̅
=

2�𝛿𝛿𝑙𝑙1̅−𝛿𝛿𝑙𝑙1,1
(𝑜𝑜)�

𝜀𝜀𝑙𝑙
2  . (4.10) 
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5   Packing in the frequency domain 
In section 1 it was shown that the control vector in the spatial domain can be defined in terms of the horizontal 
wind speed components (𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑖𝑖𝑖𝑖)or, equivalently, (𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑙𝑙𝑖𝑖𝑖𝑖) as depicted in figure 2.1. In particular, the control 
vector in the spatial domain has dimension 2𝑁𝑁1𝑁𝑁2. Some care must be taken when defining the control vector 
in the frequency domain, because of the peculiarities of the Fast Fourier Transform (FFT) algorithm. Before 
moving to the full problem, some main characteristics will be discussed in a one-dimensional example. 

One dimensional example 
Suppose a real function 𝑓𝑓(𝑥𝑥) with Fourier transform 𝑓𝑓(𝑝𝑝). When applying an FFT algorithm, the function 𝑓𝑓 
is sampled at 𝑁𝑁 real values in the spatial domain, while 𝑓𝑓 is sampled at 𝑁𝑁 complex values in the frequency 
domain. As discussed by Press et al. [1988], these complex numbers are not independent because 𝑓𝑓satisfies 
the symmetry relation 

 𝑓𝑓(−𝑝𝑝) = 𝑓𝑓∗(𝑝𝑝) , (5.1) 

the star indicating complex conjugation. This can easily be shown from the definition of the Fourier transform 
(A.1). 

On an FFT grid the sampling points in the spatial domain have coordinates 𝑥𝑥𝑖𝑖 given by 

 𝑥𝑥𝑖𝑖 = (𝑖𝑖 − 1)𝛥𝛥 ,  𝑖𝑖 = 1,⋯ ,𝑁𝑁 , (5.2) 

assuming a square grid with size 𝛥𝛥. The forward FFT operation returns the coefficients on a frequency grid 𝑝𝑝𝑗𝑗 
given by 

 𝑝𝑝𝑗𝑗 = 𝑗𝑗𝛥̂𝛥 ,  𝑗𝑗 = −1
2
𝑀𝑀 + 1,⋯ , + 1

2
𝑀𝑀 , (5.3) 

where 

 𝛥̂𝛥 = 1
𝑁𝑁𝑁𝑁

 .  (5.4) 

Using (5.1), only the non-negative frequencies of 𝑝𝑝 are independent. The FFT algorithm returns the Fourier 
coefficients in a rather peculiar order [Press et al. 1988]. This is shown schematically in figure 5.1. The first 
coefficient, 𝑓𝑓1, corresponds to zero frequency and is therefore real because it is simply the integral over the 
function 𝑓𝑓. The next coefficients, 𝑓𝑓𝑗𝑗 for 𝑗𝑗 = 2,⋯ , 1

2
𝑁𝑁, are complex and correspond to frequencies (𝑗𝑗 − 1)𝛥̂𝛥. 

The coefficient with index 𝑗𝑗 = 1
2
𝑁𝑁 + 1 is the sum of the contributions at plus and minus the maximum 

frequency 𝑝𝑝 1
2
�
𝑚𝑚𝑚𝑚𝑚𝑚

. Because of (5.1) this coefficient is also real. The last coefficients with indices 𝑗𝑗 = 1
2
𝑁𝑁 +

2,⋯ ,𝑁𝑁 correspond to the negative frequencies (𝑗𝑗 − 𝑁𝑁 − 1)𝛥̂𝛥 and these are the complex conjugates of the 
corresponding coefficients at positive frequency. Note that the coefficients which are each others complex 
conjugate lie symmetrically around the point with maximum frequency. 
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𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6 = 𝑓𝑓4∗ 𝑓𝑓7 = 𝑓𝑓3∗ 𝑓𝑓8 = 𝑓𝑓2∗ 

 𝑝𝑝 = 𝛥̂𝛥 𝑝𝑝 = 2𝛥̂𝛥 𝑝𝑝 = 3𝛥̂𝛥 𝑝𝑝 = ±4𝛥̂𝛥 𝑝𝑝 = −3𝛥̂𝛥 𝑝𝑝 = −2𝛥̂𝛥 𝑝𝑝 = −𝛥̂𝛥 

Figure 5.1   Structure of the one-dimensional Fourier coefficients in the frequency domain for N=8. The blue cells 
contain real coefficients, the red cells complex with conjugate pairs in the same shade of red. The frequency is given 

below. 

This implies that the 𝑁𝑁 complex Fourier coefficients in the frequency domain contain exactly 𝑁𝑁 independent 
real numbers, see also figure 5.1. 

Two-dimensional case 
In the two-dimensional case, applicable to 2DVAR, the Fourier transform in the frequency domain, 𝑓𝑓(𝑝𝑝, 𝑞𝑞), 
of a real function in the spatial domain, 𝑓𝑓(𝑥𝑥,𝑦𝑦) satisfies 

 𝑓𝑓(−𝑝𝑝,−𝑞𝑞) = 𝑓𝑓∗(𝑝𝑝, 𝑞𝑞) . (5.5) 

In the spatial domain the 2DVAR batch grid is sampled on points (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) with 

 𝑥𝑥𝑖𝑖 = (𝑖𝑖 − 1)𝛥𝛥 ,  𝑖𝑖 = 1,2,⋯ ,𝑁𝑁1 , (5.6a) 

 𝑦𝑦𝑗𝑗 = (𝑗𝑗 − 1)𝛥𝛥 ,  𝑗𝑗 = 1,2,⋯ ,𝑁𝑁2 , (5.6b) 

assuming a square grid. An FFT operation returns the coefficients 𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗) with 

 𝑝𝑝𝑖𝑖 = 𝑖𝑖𝛥̂𝛥𝑝𝑝 ,  𝑖𝑖 = −1
2
𝑁𝑁1 + 1,⋯ , 1

2
𝑁𝑁1 , (5.7a) 

 𝑞𝑞𝑗𝑗 = 𝑗𝑗𝛥̂𝛥𝑞𝑞  ,  𝑗𝑗 = −1
2
𝑁𝑁2 + 1,⋯ , 1

2
𝑁𝑁2 , (5.7b) 

with 

 𝛥𝛥𝑝𝑝 = 1
𝑁𝑁1𝛥𝛥

 ,  𝛥𝛥𝑞𝑞 = 1
𝑁𝑁2𝛥𝛥

 . (5.8) 

The ordering of the FFT coefficients in the frequency domain is analogous to the one-dimensional case and 
sketched in figure 5.2. 

The coefficients of the first row have 𝑝𝑝 = 0 and therefore 

 𝑓𝑓1,𝑗𝑗 = 𝑓𝑓(0, 𝑞𝑞𝑗𝑗) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋𝑞𝑞𝑗𝑗𝑦𝑦 = ∫𝑑𝑑𝑑𝑑 𝐹𝐹𝑥𝑥(𝑦𝑦) 𝑒𝑒2𝜋𝜋𝑖𝑖𝑞𝑞𝑗𝑗𝑦𝑦 , (5.9) 

with 

 𝐹𝐹𝑥𝑥(𝑦𝑦) = ∫𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥,𝑦𝑦) . (5.10) 

Now 𝐹𝐹𝑥𝑥 is a real function, because 𝑓𝑓 is real. Equation (5.9) defines the coefficients of the first row as the FFT 
coefficients of a real function. The coefficients in the first row therefore satisfy the symmetry relations of the 
one-dimensional case. The coefficients with indices (1,1) and (1, 1

2
𝑁𝑁2 + 1) are real, while the others are 

complex and each others complex conjugate, symmetric around the coefficient with index (1, 1
2
𝑁𝑁2 + 1) as 

0=p
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indicated by the white star in figure 5.2. The same argument holds with 𝑥𝑥 and 𝑦𝑦 interchanged, and therefore 
the coefficients of the first column are those of a real function. 

 

𝑖𝑖1 = 1    * 

𝑖𝑖1 = 2,⋯ ,
1
2
𝑁𝑁1    * 

𝑖𝑖1 =
1
2
𝑁𝑁1 + 1    * 

𝑖𝑖1 =
1
2
𝑁𝑁1 + 2,⋯ ,𝑁𝑁1 *  * * 

Figure 5.2   Structure of the two-dimensional Fourier coefficients of a real function. Real coefficients are indicated in 
blue, complex coefficients in red. The row numbers are given at the left. The column numbering is analogous. The stars 

indicate coefficients that are not independent. 

 

The coefficients of row 𝑘𝑘1 = 1
2
𝑁𝑁1 + 1 satisfy 

 [ ] ,),(),(ˆ),(ˆˆ )(2)(2
maxmax,

maxmax

1 ∫∫ +−+ +=−+= yqxpiyqxpi
jjjk

jj eeyxfdxdyqpfqpff ππ  (5.11) 

with 𝑝𝑝 1
21

�
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

. This can be written as 

 𝑓𝑓𝑘𝑘1,𝑗𝑗 = ∫ 𝑑𝑑𝑑𝑑 𝑒𝑒2𝜋𝜋𝜋𝜋𝑞𝑞𝑗𝑗𝑦𝑦  ∫ 𝑑𝑑𝑑𝑑 2 𝑐𝑐𝑐𝑐𝑐𝑐( 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
∫∫  (5.12) 

which again is the Fourier transform of a real function. The FFT coefficients in row 1
2
𝑁𝑁1 + 1 therefore satisfy 

the same symmetry relations as those in row 1. The same argument holds with 𝑥𝑥 and 𝑦𝑦 interchanged, so the 
FFT coefficients in column 1

2
𝑁𝑁2 + 1 satisfy the same symmetry relations as those in row 1. 

The other coefficients are all complex and form complex conjugate pairs. The pairs lie point symmetric around 
the point with indices (𝑘𝑘1,𝑘𝑘2) = (1

2
𝑁𝑁1 + 1, 1

2
𝑁𝑁2 + 1) due to (5.5). All coefficients in an area marked with a 

white star in figure 5.2 are the complex conjugate of another one in a non-marked are. In total there are exactly 
𝑁𝑁1𝑁𝑁2 independent numbers, as can easily be inferred from figure 5.2. 

A final point concerns the coefficient with indices (1,1). This coefficients corresponds to zero frequency, and 
is just the average of the function in the frequency domain. For the normalized potential increment fields in 
the frequency domain in 2DVAR it represents energy fed into or drained from the wind field. Since 2DVAR 
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is not allowed to change the energy from the system, this coefficient should be zero. Note that such a change 
in energy transforms to an average wind in the spatial domain. Putting the coefficient with indices (1,1) in the 
frequency domain equal to zero is equivalent to the requirement that 2DVAR should be free of bias – a common 
and reasonable demand. 

With this information, the packing and unpacking algorithms can be constructed as indicated in figures 5.3 and 
5.4, respectively. The dimension of the control vector equals 2(𝑁𝑁1𝑁𝑁2 − 1). Note that the role of real and 
imaginary components is opposite of that in the “normal” situation, because the transformation coefficients 
are purely imaginary. 

Basically, the algorithm contains loops over index 𝑖𝑖1 running from 1 to the total number of grid points in the 
first dimension, 𝑁𝑁1, and index 𝑖𝑖2 running from 1 to half the number of grid points plus one in the second 
dimension, 𝑘𝑘2 = 1

2
𝑁𝑁2 + 1. The loops are done twice, once for the velocity potential and once for the stream 

function. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3   Packing algorithm in the frequency domain. 
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Figure 5.4   Unpacking algorithm in the frequency domain. 

 

Effect on the background cost function 
The basic form of the background cost function is given by (3.19) as 

 𝐽𝐽𝑏𝑏 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞  [𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞)]2 + [𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞)]2 .∞

−∞  (5.13) 

Approximating the integral by a first-order summation (just like the integrals for the Fourier transformations 
in the FFT algorithm), this yields 
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with the summations running over the 2DVAR batch grid in the frequency domain. 
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                                                            = 2[𝜓𝜓�(𝑛𝑛)(𝑖𝑖1, 𝑖𝑖2)]2 , (5.15) 

with 𝑗𝑗1 = 𝑁𝑁1 + 2 − 𝑖𝑖1 and 𝑗𝑗2 = 𝑁𝑁2 + 2 − 𝑖𝑖2. This explains the origin of the factor 𝑤𝑤𝜆𝜆 in (3.18). If all 
independent components of 𝜓𝜓�(𝑛𝑛) and 𝜒̂𝜒(𝑛𝑛) are written as components of the control vector 𝜉𝜉 according to the 
packing algorithm in figure 5.3, the background cost function reads 

 𝐽𝐽𝑏𝑏 = 𝛥𝛥𝑝𝑝𝛥𝛥𝑞𝑞 ∑ 𝑤𝑤𝜆𝜆𝜉𝜉𝜆𝜆2𝜆𝜆  . (5.16) 

The weights 𝑤𝑤𝜆𝜆 are equal to 2 if the corresponding element of 𝜓𝜓�(𝑛𝑛) or𝜒̂𝜒(𝑛𝑛) belongs to a conjugate pair, and it 
equals 1 if that is not the case. This happens only for indices (1, 𝑘𝑘2), (𝑘𝑘1, 1), and (𝑘𝑘1,𝑘𝑘2) as can be inferred 
from figure 5.4. The components with index (1,1) do not contribute. 
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6 Error covariance model 
Spatial domain 
The error covariance model in the spatial domain is modeled following Daley [1991]. The Gaussian model for 
the error covariances of the velocity potential and stream function in the spatial domain is defined as 

 𝑓𝑓𝜓𝜓(𝑟𝑟) = (1 − 𝜈𝜈2)𝑉𝑉𝜓𝜓𝑒𝑒−𝑟𝑟
2/𝑅𝑅𝜓𝜓

2
 , (6.1a) 

 𝑓𝑓𝜒𝜒(𝑟𝑟) = 𝜈𝜈2𝑉𝑉𝜒𝜒𝑒𝑒−𝑟𝑟
2/𝑅𝑅𝜒𝜒2  , (6.1b) 

where 𝜈𝜈2 stands for the ratio of the rotational and the divergent contribution to the wind field, 𝑅𝑅𝜓𝜓 and 𝑅𝑅𝜒𝜒 for 
the length scales determining the extent of the error correlations, and  𝑉𝑉𝜓𝜓 and 𝑉𝑉𝜒𝜒 for the variance of the error 
in 𝜓𝜓 and 𝜒𝜒, respectively. The error covariance model presented above holds for isotropic errors in 𝜓𝜓 and 𝜒𝜒. 
The error variances 𝑉𝑉𝜓𝜓 and 𝑉𝑉𝜒𝜒 are in the potential domain and therefore hard to estimate. It would be much 
more convenient to express them in the wind domain. The errors in the potential and wind domains are related 
as [Daley, 1991, section 5.2] 

 𝑉𝑉𝑙𝑙 = 𝑉𝑉𝜓𝜓
𝐿𝐿𝜓𝜓
2  ,  𝑉𝑉𝑡𝑡 = 𝑉𝑉𝜒𝜒

𝐿𝐿𝜒𝜒2
 .  (6.2) 

with 𝑉𝑉𝑙𝑙 and 𝑉𝑉𝑡𝑡 the variances of the error in the background wind components 𝑙𝑙 and 𝑡𝑡, respectively. The scaling 
parameters 𝐿𝐿𝜓𝜓 and 𝐿𝐿𝜒𝜒 are defined as 

 𝐿𝐿𝜓𝜓2 = − 𝑓𝑓𝜓𝜓(𝑟𝑟)
𝛻𝛻2𝑓𝑓𝜓𝜓(𝑟𝑟)

�
𝑟𝑟=0

,  𝐿𝐿𝜒𝜒2 = − 𝑓𝑓𝜒𝜒(𝑟𝑟)
𝛻𝛻2𝑓𝑓𝜒𝜒(𝑟𝑟)

�
𝑟𝑟=0

 . (6.3) 

These relations are derived at the end of this chapter, since they are not explicitly given by Daley. Equation 
(6.3) holds for any form of the error correlation function. Note that Daley adds an additional factor of 2 in the 
right-hand side of (6.3), but that is incorrect. For the Gaussian form (6.1) one readily finds 

 𝐿𝐿𝜓𝜓2 = 1
2
𝑅𝑅𝜓𝜓2  ,  𝐿𝐿𝜒𝜒2 = 1

2
𝑅𝑅𝜒𝜒2  , (6.4) 

and (6.1) becomes 

 𝑓𝑓𝜓𝜓(𝑟𝑟) = (1 − 𝜈𝜈2)𝑉𝑉𝑙𝑙𝐿𝐿𝜓𝜓2 𝑒𝑒
− 𝑟𝑟2

𝑅𝑅𝜓𝜓
2

= 1
2

(1 − 𝜈𝜈2)𝑉𝑉𝑙𝑙𝑅𝑅𝜓𝜓2 𝑒𝑒
−𝑟𝑟2

𝑅𝑅𝜓𝜓
2

 , (6.5a) 

 𝑓𝑓𝜒𝜒(𝑟𝑟) = 𝜈𝜈2𝑉𝑉𝑡𝑡𝐿𝐿𝜒𝜒2 𝑒𝑒
−𝑟𝑟2

𝑅𝑅𝜒𝜒2 = 1
2
𝑉𝑉𝑡𝑡𝑅𝑅𝜒𝜒2𝑒𝑒

−𝑟𝑟2

𝑅𝑅𝜒𝜒2  . (6.5b) 

 

Frequency domain 
Fourier transformation yields the error covariance model in the frequency domain. The Gaussian model will 
also be Gaussian in the frequency domain, see appendix G. Using equation (G.4) the error covariance in the 
frequency domain reads (see also 3.12) 
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 𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞) = 𝐵𝐵𝜓𝜓�𝜓𝜓� (𝑝𝑝, 𝑞𝑞) = 𝜋𝜋
2

(1 − 𝜈𝜈2)𝑉𝑉𝑙𝑙𝑅𝑅𝜓𝜓4 𝑒𝑒
−𝜋𝜋2𝑅𝑅𝜓𝜓

2 (𝑝𝑝2+𝑞𝑞2) , (6.6a) 

 𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) = 𝐵𝐵𝜒𝜒�𝜒𝜒�(𝑝𝑝, 𝑞𝑞) = 𝜋𝜋
2
𝜈𝜈2𝑉𝑉𝑡𝑡𝑅𝑅𝜒𝜒4𝑒𝑒−𝜋𝜋

2𝑅𝑅𝜒𝜒2(𝑝𝑝2+𝑞𝑞2) . (6.6b) 

For the conditioning transformation we need the matrix elements of 𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2 and 𝐵𝐵𝜒𝜒�𝜒𝜒�

1/2, which are the square root 
of (6.6) 

 𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2(𝑝𝑝, 𝑞𝑞) = �𝜋𝜋

2
(1 − 𝜈𝜈2) 𝜀𝜀𝑙𝑙𝑅𝑅𝜓𝜓2 𝑒𝑒

−12𝜋𝜋
2𝑅𝑅𝜓𝜓

2 (𝑝𝑝2+𝑞𝑞2) , (6.7a) 

 𝐵𝐵𝜒𝜒�𝜒𝜒�
1/2(𝑝𝑝, 𝑞𝑞) = �𝜋𝜋

2
 𝜈𝜈𝜀𝜀𝑡𝑡𝑅𝑅𝜒𝜒2𝑒𝑒

−12𝜋𝜋
2𝑅𝑅𝜒𝜒2(𝑝𝑝2+𝑞𝑞2) , (6.7b) 

with 𝜀𝜀𝑙𝑙 = �𝑉𝑉𝑙𝑙 and 𝜀𝜀𝑡𝑡 = �𝑉𝑉𝑡𝑡. 

Relation between errors in the wind domain and the potential domain 
Daley [1991, section 5.2] defines the error covariances in the wind domain and in the potential domain as 

 𝐶𝐶𝑙𝑙𝑙𝑙(𝑟𝑟) = 𝐸𝐸𝑙𝑙2𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) ,  𝐶𝐶𝑡𝑡𝑡𝑡(𝑟𝑟) = 𝐸𝐸𝑡𝑡2𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) ,   (6.8a) 

 𝐶𝐶𝜓𝜓𝜓𝜓(𝑟𝑟) = 𝐸𝐸𝜓𝜓2𝜌𝜌𝜓𝜓𝜓𝜓(𝑟𝑟) ,  𝐶𝐶𝜒𝜒𝜒𝜒(𝑟𝑟) = 𝐸𝐸𝜒𝜒2𝜌𝜌𝜒𝜒𝜒𝜒(𝑟𝑟) ,   (6.8b) 

where 𝐸𝐸2 stands for the error variance and 𝜌𝜌 for the error correlation. Comparison with the previous sections 
shows the correspondence 𝐶𝐶 ↔ 𝑓𝑓 and 𝐸𝐸2 ↔ 𝑉𝑉. Since 𝜌𝜌(0) = 1 it follows that for each component 𝐶𝐶(0) = 𝐸𝐸2. 
Daley also shows that in the isotropic case 

 𝐶𝐶𝑙𝑙𝑙𝑙(𝑟𝑟) = −1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝜓𝜓𝜓𝜓(𝑟𝑟) − 𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝐶𝐶𝜒𝜒𝜒𝜒(𝑟𝑟) ,   (6.9a) 

 𝐶𝐶𝑡𝑡𝑡𝑡(𝑟𝑟) = −1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝜒𝜒𝜒𝜒(𝑟𝑟) − 𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝐶𝐶𝜓𝜓𝜓𝜓(𝑟𝑟) .   (6.9b) 

Setting 𝑟𝑟 = 0 lets the first derivatives vanish, since the covariances are symmetric functions of their argument. 
The second derivatives evaluated at 𝑟𝑟 = 0 can be written using (6.4) as 

 𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝐶𝐶𝜓𝜓𝜓𝜓(𝑟𝑟)�

𝑟𝑟=0
= 𝛻𝛻2𝐶𝐶𝜓𝜓𝜓𝜓(𝑟𝑟)�

𝑟𝑟=0
= −𝐿𝐿𝜓𝜓2 𝐶𝐶𝜓𝜓𝜓𝜓(0) ,   (6.10a) 

 𝑑𝑑2

𝑑𝑑𝑟𝑟2
𝐶𝐶𝜒𝜒𝜒𝜒(𝑟𝑟)�

𝑟𝑟=0
= 𝛻𝛻2𝐶𝐶𝜒𝜒𝜒𝜒(𝑟𝑟)�

𝑟𝑟=0
= −𝐿𝐿𝜒𝜒2 𝐶𝐶𝜒𝜒𝜒𝜒(0) .   (6.11b) 

Substituting this in (6.9) and letting 𝑪𝑪(𝟎𝟎) = 𝑬𝑬𝟐𝟐 immediately yields (6.5). 
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7   Single observation test 
Single observation solution 
In case there is exactly one observation, the 2DVAR problem can be solved analytically. Suppose that at some 
point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) on the 2DVAR grid there is one observation (𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜) with increment (𝛿𝛿𝑢𝑢𝑜𝑜, 𝛿𝛿𝑣𝑣𝑜𝑜). Starting with 
zero background increment and zero analysis increment field, the only contribution to the cost function and its 
gradient originates from this observation. From (4.9) and (4.10) this contribution reads 

 𝐽𝐽𝑜𝑜 = 𝛿𝛿𝑢𝑢𝑜𝑜2+𝛿𝛿𝑣𝑣𝑜𝑜2

𝜀𝜀𝑂𝑂
2 = 𝑢𝑢𝑜𝑜2+𝑣𝑣𝑜𝑜2

𝜀𝜀𝑂𝑂
2  , (7.1a) 

 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝑢𝑢𝑜𝑜

= 2𝛿𝛿𝑢𝑢𝑜𝑜
𝜀𝜀𝑂𝑂
2 = 2𝑢𝑢𝑜𝑜

𝜀𝜀𝑂𝑂
2  ,  𝜕𝜕𝐽𝐽𝑜𝑜

𝜕𝜕𝑣𝑣𝑜𝑜
= 2𝛿𝛿𝑣𝑣𝑜𝑜

𝜀𝜀𝑂𝑂
2 = 2𝑣𝑣𝑜𝑜

𝜀𝜀𝑂𝑂
2  . (7.1b) 

with 𝜀𝜀𝑂𝑂 = 𝜀𝜀𝑢𝑢 = 𝜀𝜀𝑣𝑣. Now the 2DVAR problem reduces to an optimal interpolation problem [Daley, 1991] with 
solution 

 𝐽𝐽𝑡𝑡fina𝑙𝑙 = 𝜀𝜀𝐵𝐵
2𝜀𝜀𝑂𝑂

2

(𝜀𝜀𝐵𝐵
2+𝜀𝜀𝑂𝑂

2 )2
𝐽𝐽𝑡𝑡initial , (7.2) 

where 𝐽𝐽𝑡𝑡 = 𝐽𝐽𝑜𝑜 + 𝐽𝐽𝑏𝑏 is the total cost function. At the solution point, the gradient of the total cost function should 
be zero, since the total cost function is minimal there. Therefore 

 𝛻𝛻𝐽𝐽𝑏𝑏 = −𝛻𝛻𝐽𝐽𝑜𝑜 . (7.3) 

With these relations it is possible to calculate the final analysis field as shown schematically in figure 7.1. 
Starting with values for (𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜) and for 𝜀𝜀𝑂𝑂 and 𝜀𝜀𝐵𝐵, the final cost function value is obtained from (7.2). The 
gradient of the observation part of the cost function is obtained from (7.1b). This yields the gradient of the 
background part of the cost function according to (7.3). Since the background cost function can be defined as 
𝐽𝐽𝑏𝑏 = 𝜉𝜉𝑇𝑇𝜉𝜉, its gradient reads 

 𝛻𝛻𝐽𝐽𝑏𝑏 = 2𝜉𝜉 . (7.4) 

From (7.4) the background potential field can be retrieved. See appendix E for a more elaborate derivation. 
The increment of the analysis wind equals the analysis wind itself, since the background is assumed to be zero, 
so at the observation point it satisfies 

 (𝑢𝑢, 𝑣𝑣) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝐵𝐵
2+𝜀𝜀𝑂𝑂

2 (𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜) . (7.5) 

Applying the unconditioning transformation to the background potential field yields the analysis wind field 
that should have the prescribed rotational and/or divergent structure determined by the value of 𝜈𝜈 set in the 
error covariance model. Since the wind speed at point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) should satisfy (7.5), its value can be used to 
check the unconditioning transformation. A second check consists of packing the potential fields into a control 
vector and calculating the final background contribution to the total cost, which should satisfy (7.2), and that 
to the total gradient, which should satisfy (7.3). 
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(𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜)  JoScat 
�⎯⎯⎯⎯⎯� 𝐽𝐽𝑜𝑜,𝛻𝛻𝐽𝐽𝑜𝑜  Uncondition

 adjoint  
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� (𝛻𝛻𝜒̂𝜒𝑜𝑜

(𝑛𝑛),𝛻𝛻𝜓𝜓�𝑜𝑜
(𝑛𝑛)) 

    ↓𝛻𝛻𝐽𝐽𝑜𝑜 + 𝛻𝛻𝐽𝐽𝑏𝑏 = 0↓ 
 

    (𝛻𝛻𝜒̂𝜒𝑏𝑏
(𝑛𝑛),𝛻𝛻𝜓𝜓�𝑏𝑏

(𝑛𝑛)) 

    
↓𝜒𝜒𝑏𝑏 = 1

2
𝛻𝛻𝜒𝜒𝑏𝑏  

𝜓𝜓𝑏𝑏 = 1
2
𝛻𝛻𝜓𝜓𝑏𝑏↓ 

  𝝃𝝃𝑏𝑏  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃← 
�⎯⎯⎯⎯⎯⎯� (𝜒̂𝜒𝑏𝑏

(𝑛𝑛),𝜓𝜓�𝑏𝑏
(𝑛𝑛)) 

  ↓ 𝐽𝐽𝐽𝐽 ↓  ↓ Uncondition ↓ 

  𝐽𝐽𝑏𝑏 ,𝛻𝛻𝐽𝐽𝑏𝑏  (𝑢𝑢𝑏𝑏 ,𝑣𝑣𝑏𝑏) 

Figure 7.1   Scheme for calculating the solution in the single observation test. The green boxes indicate quantities that 
can be compared with the input values. 

 

This test is implemented in program SOSC (Single Observation Solution Check). The required solution is 
retrieved within machine precision (about six decimal places). 

Single Observation Analysis 
The next step in testing the cost function and its gradient is to start with zero background and let 2DVAR’s 
minimization routine find the solution. This is done in program SOAP (Single Observation Analysis Plot). 

Figure 7.2 shows the resulting wind fields for (𝑢𝑢𝑜𝑜 , 𝑣𝑣𝑜𝑜) equal to (1,0) or (0,1) m/s and 𝜈𝜈 equal to zero (purely 
rotational) or one (purely divergent). The observation is located in the centre of the grid, 𝑥𝑥 and 𝑦𝑦 equal to 1600 
km. The range parameters 𝑅𝑅𝜓𝜓 and 𝑅𝑅𝜒𝜒 are both equal to 300 km. The error variance in the observations and in 
the background field was set equal to 3.24 m2/s2 for both. The wind speed at 𝑥𝑥 and 𝑦𝑦 equal to 1600 km should 
equal half of the initial observation. This is satisfied with an accuracy better than 2 ⋅ 10−5. The minimization 
in 2DVAR is performed by routine LBFGS [Liu and Nocedal, 1989]. The accuracy with which the solution is 
retrieved can be controlled with the parameter 𝜀𝜀 defined as 

 𝜀𝜀2 = ‖𝛻𝛻𝐽𝐽𝑡𝑡‖
‖𝐽𝐽𝑡𝑡‖

= ∑ (𝛻𝛻𝐽𝐽𝑡𝑡|𝜆𝜆)𝜆𝜆
2

∑ 𝐽𝐽𝑡𝑡2�𝜆𝜆𝜆𝜆
 . (7.7) 
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Figure 7.2   Results of the single observation test for various observations and values of the rotational/divergence ratio. 
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Iteration 𝑱𝑱𝒕𝒕 
‖𝜵𝜵𝑱𝑱𝒕𝒕‖
‖𝑱𝑱𝒕𝒕‖

 𝒗𝒗𝒄𝒄 

1 0.308642   
2 0.30864152   
3 0.30863965   
4 0.30863214   
5 0.30860204   
6 0.3084817   
7 0.30800086   
8 0.30608514   
9 0.2985448   
10 0.2703461 4.65 10-12 0.06656095 
11 0.15591854 3.98 10-14 0.49277255 
12 0.15513143 2.82 10-14 0.49654663 
13 0.15432084 2.34 10-19 0.5000003 

Table 7.1   Convergence of 2DVAR’s minimization in SOAP. The quantity 𝑣𝑣𝑐𝑐 is the meridional wind speed at x = y = 
1600 km and should equal 0.5 m/s. 

 

Table 7.1 shows in detail the convergence of SOAP for (𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜) = (0,1) m/s, 𝜈𝜈 = 0 (purely rotational), and 
𝑅𝑅𝜓𝜓 = 𝑅𝑅𝜒𝜒 = 300km. The cost function does not converge with uniform speed. Convergence starts slowly but 
surely, with a rate of about one decimal place per iteration. The final solution is almost reached at the 11-th 
iteration. The last two iterations further improve the minimum. 

Routine LBFGS stops when the calculated ratio of the norm of the cost gradient and the cost is smaller than 𝜀𝜀. 
Table 7.1 shows that 𝜀𝜀 should be smaller than 4.65 10-12 , otherwise LBFGS would stop at iteration number 10 
or earlier, before it has converged to a decent velocity field (𝑣𝑣𝑐𝑐 is much too small at iteration 10). On the other 
hand, 𝜀𝜀 should be larger than 2.34 10-19 , because otherwise LBFGS would be forced to search a minimum 
beyond machine precision. Therefore 𝜀𝜀 should be somewhere between 10-16 and 10-18. 

Positional properties 
Figure 7.3 shows what happens with the single observation analysis when the observation is not in the center 
of the 2DVAR grid (left panel), but at the edge (right panel). This figure was obtained with (𝑢𝑢𝑜𝑜, 𝑣𝑣𝑜𝑜) = (0,1) 
m/s, 𝜈𝜈 = 0, and 𝑅𝑅𝜓𝜓 = 𝑅𝑅𝜒𝜒 = 600 km in order to extend the spatial range of the covariance structures. Figure 
7.2 shows that the analysis is periodic. In order to prevent mixing of observations at the grid edges, the 2DVAR 
grid should be extended such that the periodicity of the analysis has no influence on the final 2DVAR results. 
The size of such an extension depends on the spatial scale of the background error correlation lengths 𝑅𝑅𝜓𝜓 and 
𝑅𝑅𝜒𝜒. It should be several times the correlation length. 
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Figure 7.2   Effect of the observation position on the analysis. 
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8 Some implementation notes 
Evaluation of the cost function and its gradient 
The background contribution to the cost function reads 

 𝐽𝐽𝑏𝑏 = 2∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

0  𝝃𝝃2 ≈ 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 ∑ 𝑤𝑤𝜆𝜆𝜉𝜉𝜆𝜆2
2(𝑁𝑁1𝑁𝑁2−1)
𝜆𝜆=1  , (8.1) 

where the integral has been approximated by the sum over the gridded potential fields normalized with the 
integration weight 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = (𝑁𝑁1𝑁𝑁2𝛥𝛥2)−1, 𝛥𝛥 being the 2DVAR grid size in position space.  

The following points must be noted: 

 It is not necessary to use a higher order approximation for the integral like Simpson’s rule, because the 
Fourier transforms are evaluated at the same order. 

 Since the observation part of the cost function is evaluated in position space, the integration weight in (8.1) 
must be included. Otherwise, the two components of the cost function differ in normalization and can not 
be added to yield the total cost. 

 The control vector weights in (8.1) reflect the fact that the potential fields are Hermitian. They should be 
applied not only to 𝐽𝐽𝑏𝑏, but also to its gradient 𝛻𝛻𝐽𝐽𝑏𝑏 and to the gradient of the observation cost, 𝛻𝛻𝐽𝐽𝑜𝑜. This is 
because the potential fields due to the observations are also Hermitian. 

 The present implementation of 2DVAR uses complex matrices of dimension 𝑁𝑁1 × 𝑁𝑁2 in the frequency 
domain and a complex-to-complex FFT routine. Since the potential fields are Hermitian, it is not necessary 
to calculate the transformation and the convolution (or their adjoints) for all indices 𝑖𝑖1 = 1,⋅⋅⋅,𝑁𝑁1 and 𝑖𝑖2 =
1,⋅⋅⋅,𝑁𝑁2. It would be sufficient to take only the independent components into account. A simple method 
with slight overhead would be to limit the index 𝑖𝑖2 to non-negative frequencies only, 𝑖𝑖2 = 1,⋅⋅⋅,𝑘𝑘2 with 
𝑘𝑘2 = 1

2
𝑁𝑁2 + 1. Such an adaptation in combination with a real-to-real FFT routine would increase the 

computational efficiency of 2DVAR – at the cost of more complicated code. Since 2DVAR in its present 
form is fast enough to meet all operational requirements so far, this adaptation has low priority. 

The backward FFT in genscat support is defined as (see appendix A) 

 𝑢𝑢𝑘𝑘,𝑙𝑙 = 1
𝑁𝑁1𝑁𝑁2

∑ ∑ 𝑢𝑢�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑁𝑁1

+ 𝑙𝑙𝑙𝑙
𝑁𝑁2
�𝑁𝑁2−1

𝑛𝑛=0  ,𝑁𝑁1−1
𝑚𝑚=0  (8.2) 

i.e., including a normalization factor (𝑁𝑁1𝑁𝑁2)−1 and therefore assuming unity grid size. The adjoint of (8.2) is 
simply the forward FFT and should contain the proper normalization factor 𝛥𝛥2, with 𝛥𝛥 the 2DVAR grid size. 
Because the factor (𝑁𝑁1𝑁𝑁2)−1 is included in the lowest level FFT routine, the adjoint inverse FFT routine in 
genscat still contains the normalization factor (𝑁𝑁1𝑁𝑁2)−1 if it is defined as the complex conjugate of the inverse 
FFT. 
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 In order to avoid confusion regarding the normalizations in the forward and inverse FFT routines, it is 
better to use a forward FFT routine rather than an adjoint inverse routine in 2DVAR. 

Initial minimization step size 
The minimization is performed by routine LBFGS [Liu and Nocedal, 1989]. The size of the first step is 
estimated in the original routine as 1/|𝑔𝑔(0)|, where 𝑔𝑔(0) is the gradient at the initial point 𝜉𝜉 = 0. This step 
size may be much too small for 2DVAR, causing the minimization procedure to get stuck at the first point. It 
is shown in appendix H that for the 2DVAR problem a better first step size is given by 𝑓𝑓(0)/|𝑔𝑔(0)|, with 𝑓𝑓(0) 
the value of the cost function at the initial point. 

In practice, a first step size of 30𝑓𝑓(0)/|𝑔𝑔(0)| leads to some improvement, because on average less function 
evaluations are needed to find the minimum. 

 

 

 



  

Two-dimensional variational 
ambiguity removal (2DVAR) 

Doc ID : NWPSAF-KN-TR-004 
Version : 1.8 
Date : 01-06-2022 

 

 

 

 35  

9   Resume 
 
The relevant formulas for 2DVAR are collected in this paragraph. The analysis wind field is found by 
minimizing a cost function 𝐽𝐽(𝝃𝝃) expressed in terms of the so-called preconditioned control vector 𝝃𝝃 which is 
expressed in terms of the normalized potential fields in the frequency domain. If 𝛿𝛿𝒙𝒙 stands for the control 
vector in terms of the analysis increments in the spatial domain, it is related to 𝝃𝝃 by the unconditioning 
transformation 

 𝛿𝛿𝒙𝒙 = 𝑼𝑼𝑼𝑼 . (9.1) 

The cost function is given by 

 𝐽𝐽 = 𝐽𝐽𝑏𝑏 + 𝐽𝐽𝑜𝑜 , (9.2) 

with the background term 𝐽𝐽𝑏𝑏 expressed in terms of the normalized potential fields in the frequency domain as 

 𝐽𝐽𝑏𝑏 = ∑ 𝑤𝑤𝜆𝜆𝝃𝝃𝜆𝜆𝑇𝑇𝝃𝝃𝜆𝜆 ,2(𝑁𝑁1𝑁𝑁2−1)
𝜆𝜆=1  (9.3) 

where the index 𝜆𝜆 runs over all independent potential field components, and the weights 𝑤𝑤 are determined by 
the fact that the potential fields are Hermitian on one hand, and the properties of the FFT algorithm on the 
other. The observation term 𝐽𝐽𝑜𝑜 in terms of the analysis increments in the spatial domain reads 

 𝐽𝐽𝑜𝑜 = ∑ 𝐽𝐽𝑠𝑠
−1/𝑝𝑝 ,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚=1  (9.4a) 

 𝐽𝐽𝑠𝑠 = ∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝
𝑀𝑀𝑚𝑚
𝑘𝑘=1  , (9.4b) 

where the analysis increments 𝛿𝛿𝑡𝑡𝑚̅𝑚 and 𝛿𝛿𝑙𝑙𝑚̅𝑚 are interpolated from the 2DVAR analysis grid to the position of 
observation 𝑚𝑚. In (9.4) we have 𝑝𝑝 = 4 and 𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑙𝑙 = 1.8m/s. Note that 𝑡𝑡 stands for the transversal wind 
component in the 2DVAR batch grid and 𝑙𝑙 for the longitudinal one. 

The contribution of the background term to component𝜆𝜆 of the cost function gradient reads  

 𝛻𝛻𝐽𝐽𝑏𝑏|𝜆𝜆 = 2𝑤𝑤𝜆𝜆𝝃𝝃𝜆𝜆 . (9.5) 

The derivatives of the observation part of the cost function in the positional domain read 

 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= −1
𝑝𝑝
𝐽𝐽𝑠𝑠
−1−1𝑝𝑝 𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚
 , (9.6a) 

  𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚

= 𝜕𝜕𝐽𝐽𝑜𝑜
𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚

= −1
𝑝𝑝
𝐽𝐽𝑠𝑠
−1−1/𝑝𝑝 𝜕𝜕𝐽𝐽𝑠𝑠

𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚
 , (9.6b) 

with 

 𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑡𝑡𝑚̅𝑚

= −𝑝𝑝∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝−1
2�𝛿𝛿𝑡𝑡̅𝑚𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �

𝜀𝜀𝑡𝑡2
𝑀𝑀𝑚𝑚
𝑘𝑘=1  , (9.7a) 
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 𝜕𝜕𝐽𝐽𝑠𝑠
𝜕𝜕𝜕𝜕𝑙𝑙𝑚̅𝑚

= −𝑝𝑝∑ �
�𝛿𝛿𝑡𝑡𝑚̅𝑚−𝛿𝛿𝑡𝑡𝑚𝑚,𝑘𝑘

(𝑜𝑜) �
2

𝜀𝜀𝑡𝑡2
+

�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘
(𝑜𝑜) �

2

𝜀𝜀𝑙𝑙
2 − 2 𝑙𝑙𝑙𝑙 𝑃𝑃𝑘𝑘�

−𝑝𝑝−1
2�𝛿𝛿𝑙𝑙𝑚̅𝑚−𝛿𝛿𝑙𝑙𝑚𝑚,𝑘𝑘

(𝑜𝑜) �

𝜀𝜀𝑙𝑙
2

𝑀𝑀𝑚𝑚
𝑘𝑘=1  . (9.7b) 

As stated before, the spatial domain and the frequency domain are connected by the unconditioning 
transformation (9.1). The gradient of the observation part of the cost function in the frequency domain is given 
by 

 𝛻𝛻𝜉𝜉𝐽𝐽𝑜𝑜 = 𝑼𝑼∗𝛻𝛻𝑥𝑥𝐽𝐽𝑜𝑜 , (9.8) 

where 𝑼𝑼∗ is the adjoint of 𝑼𝑼 (i.e., the complex conjugate of its transpose) and the gradient vector 𝛻𝛻𝑥𝑥𝐽𝐽𝑜𝑜 has the 
derivatives (9.6) as its components, the subscripts of the gradient operators indicating the domain. 

The unconditioning transformation consists of three parts, 

 𝑼𝑼 = 𝑩𝑩𝜒𝜒� ,𝜓𝜓�
1/2𝑯𝑯𝐹𝐹−1 , (9.9) 

with 𝐹𝐹−1 the inverse Fourier transform, 𝑯𝑯 the Helmholz transformation operator, and 𝑩𝑩𝜒𝜒� ,𝜓𝜓�
1/2  the square root of 

the factorized background error covariance matrix expressed in terms of stream function and wind potential in 
wavenumber space. 

The discrete inverse Fourier transform reads 

 𝑡𝑡𝑘𝑘,𝑙𝑙 = 1
𝑁𝑁1𝑁𝑁2𝛥𝛥2

∑ ∑ 𝑡̂𝑡𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑁𝑁1

+ 𝑙𝑙𝑙𝑙
𝑁𝑁2
�𝑁𝑁2−1

𝑛𝑛=0  ,𝑁𝑁1−1
𝑚𝑚=0  (9.10a) 

 𝑙𝑙𝑘𝑘,𝑙𝑙 = 1
𝑁𝑁1𝑁𝑁2𝛥𝛥2

∑ ∑ 𝑙𝑙𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑁𝑁1

+ 𝑙𝑙𝑙𝑙
𝑁𝑁2
�𝑁𝑁2−1

𝑛𝑛=0  ,𝑁𝑁1−1
𝑚𝑚=0  (9.10b) 

where 𝛥𝛥 is the size of the spatial grid that has dimensions 𝑁𝑁1 × 𝑁𝑁2. 

The Helmholz transformation is given by 

 𝑡̂𝑡 = ℎ�1𝜒̂𝜒 − ℎ�2𝜓𝜓� , (9,11a) 

 𝑙𝑙 = ℎ�2𝜒̂𝜒 + ℎ�1𝜓𝜓� , (9.11b) 

with 

 ℎ�1(𝑝𝑝) = −2𝜋𝜋𝜋𝜋𝜋𝜋 , (9.12a) 

 ℎ�2(𝑞𝑞) = −2𝜋𝜋𝜋𝜋𝜋𝜋 . (9.12b) 

The normalization reads 

 𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2(𝑝𝑝, 𝑞𝑞) = �� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜓𝜓(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞)�

1
2 , (9.13a) 

 𝐵𝐵𝜒𝜒�𝜒𝜒�
1/2(𝑝𝑝, 𝑞𝑞) = �� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝜒𝜒(𝑥𝑥, 𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞)�

1
2 . (9.13b) 

The error correlation functions in the spatial domain are defined as a function of 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 as 

 𝑓𝑓𝜓𝜓(𝑟𝑟) = (1 − 𝜈𝜈2)𝑉𝑉𝑙𝑙𝐿𝐿𝜓𝜓2 𝑒𝑒
− 𝑟𝑟2

𝑅𝑅𝜓𝜓
2

 , (9.14a) 
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 𝑓𝑓𝜒𝜒(𝑟𝑟) = 𝜈𝜈2𝑉𝑉𝑡𝑡𝐿𝐿𝜒𝜒2 𝑒𝑒−𝑟𝑟
2/𝑅𝑅𝜒𝜒2  , (9.14b) 

where 𝑉𝑉𝑙𝑙 and 𝑉𝑉𝑡𝑡 stand for the variance of the error in 𝑙𝑙 and 𝑡𝑡, respectively, and 𝜈𝜈2 for the ratio of the rotational 
and the divergent contribution to the wind field. The length scales 𝑅𝑅𝜓𝜓 and 𝑅𝑅𝜒𝜒determine the extent of the error 
correlations, and the scaling parameters 𝐿𝐿𝜓𝜓 and 𝐿𝐿𝜒𝜒 for the transformation of the error variances from the 
potential domain to the wind domain are defined as 

 𝐿𝐿𝜓𝜓2 = − 2𝑓𝑓𝜓𝜓(𝑟𝑟)
𝛻𝛻2𝑓𝑓𝜓𝜓(𝑟𝑟)

�
𝑟𝑟=0

,  𝐿𝐿𝜒𝜒2 = − 2𝑓𝑓𝜒𝜒(𝑟𝑟)
𝛻𝛻2𝑓𝑓𝜒𝜒(𝑟𝑟)

�
𝑟𝑟=0

 . (9.15) 

For Gaussian error covariances the normalizations can be calculated analytically.
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10 Flow dependent background errors 
 
In the preceding chapters it was assumed that the background error covariance matrix 𝑩𝑩 (or, more precisely, 
its inverse) was a function of the distance between two points only, and that the background error variances 
were constant within a batch. It will now first be shown that this considerably simplifies evaluation of the 
background cost function when transformed to wavenumber space. If the background errors are flow 
dependent, they are no longer constant but depend on position. It will be shown that this can easily be 
incorporated in the current 2DVAR scheme. 

General case 
In position space, the background cost function can be written in continuous representation as (c.f. equation 
(2.10)) 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′ 𝛿𝛿∗(𝒙𝒙)𝑩𝑩−1(𝒙𝒙,𝒙𝒙′)𝛿𝛿(𝒙𝒙′) , (10.1) 

where 𝒙𝒙 = (𝑥𝑥, 𝑦𝑦), 𝒙𝒙′ = (𝑥𝑥′,𝑦𝑦′), and 𝛿𝛿 stands for 𝛿𝛿𝛿𝛿 or 𝛿𝛿𝛿𝛿. This is the usual expression for a scalar product in 
Hilbert space. The star indicating complex conjugation could be omitted in (10.1) since 𝛿𝛿 is a real vector. 
However, it is useful to keep it as a reminder for the case 𝛿𝛿 is Fourier transformed. Transforming to 
wavenumber space, the cost function reads 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′  ∫ 𝑑𝑑𝒑𝒑 𝑒𝑒2𝜋𝜋𝜋𝜋𝒑𝒑⋅𝒙𝒙𝛿̂𝛿∗(𝒑𝒑)∫𝑑𝑑𝒒𝒒∫𝑑𝑑𝒒𝒒′ 𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒⋅𝒙𝒙𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒
′⋅𝒙𝒙′𝑩𝑩�−1�𝒒𝒒,𝒒𝒒′� × 

      × ∫𝑑𝑑𝒑𝒑′ 𝑒𝑒−2𝜋𝜋𝜋𝜋𝒑𝒑
′⋅𝒙𝒙′𝛿̂𝛿(𝒑𝒑′) . (10.2) 

Rearranging terms yields 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑∫𝑑𝑑𝒒𝒒∫𝑑𝑑𝒒𝒒′ ∫𝑑𝑑𝒑𝒑′ 𝛿̂𝛿∗(𝒑𝒑)𝑩𝑩�−1(𝒒𝒒,𝒒𝒒′)𝛿̂𝛿(𝒑𝒑′)∫𝑑𝑑𝒙𝒙 𝑒𝑒−2𝜋𝜋𝜋𝜋(𝒒𝒒−𝒑𝒑)⋅𝒙𝒙 ∫ 𝑑𝑑𝒙𝒙′  𝑒𝑒−2𝜋𝜋𝜋𝜋(𝒑𝒑
′+𝒒𝒒′)⋅𝒙𝒙′  . (10.3) 

The integrals over position yield delta functions, so 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑∫𝑑𝑑𝒑𝒑′ 𝛿̂𝛿∗(𝒑𝒑)𝑩𝑩�−1(𝒑𝒑,−𝒑𝒑′)𝛿̂𝛿(−𝒑𝒑′) . (10.4) 

Since 𝑩𝑩 and 𝛿𝛿 are real functions in position space, their Fourier transforms are symmetric in their arguments, 
and therefore 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑∫𝑑𝑑𝒑𝒑′ 𝛿̂𝛿∗(𝒑𝒑)𝑩𝑩�−1(𝒑𝒑,𝒑𝒑′)𝛿̂𝛿(𝒑𝒑′) . (10.5) 

Now the evaluation of 𝐽𝐽𝑏𝑏 in wavenumber space requires as many integrations as in position space, so 
transformation to wavenumber space yields no gain in efficiency for evaluating 𝐽𝐽𝑏𝑏. 

Constant background errors 
In the preceding chapter it was assumed that the background error variances were constant (at least within a 
batch), and that the background error correlation was a function of distance. This can be expressed as 𝑩𝑩−1 =
𝑩𝑩−1(𝒙𝒙 − 𝒙𝒙′), so 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′ 𝛿𝛿∗(𝒙𝒙)𝑩𝑩−1(𝒙𝒙 − 𝒙𝒙′)𝛿𝛿(𝒙𝒙′) , (10.6) 
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Taking Fourier transforms, one arrives at 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′  ∫ 𝑑𝑑𝒑𝒑 𝑒𝑒2𝜋𝜋𝜋𝜋𝒑𝒑⋅𝒙𝒙𝛿̂𝛿∗(𝒑𝒑)∫𝑑𝑑𝒒𝒒 𝑒𝑒−2𝜋𝜋𝜋𝜋𝒒𝒒⋅(𝒙𝒙−𝒙𝒙
′)𝑩𝑩�−1(𝒒𝒒)∫𝑑𝑑𝒑𝒑′ 𝑒𝑒−2𝜋𝜋𝜋𝜋𝒑𝒑

′⋅𝒙𝒙′𝛿̂𝛿(𝒑𝒑′) . (10.7) 

Rearranging terms yields 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑∫𝑑𝑑𝒒𝒒∫𝑑𝑑𝒑𝒑′ 𝛿̂𝛿∗(𝒑𝒑)𝑩𝑩�−1(𝒒𝒒)𝛿̂𝛿(𝒑𝒑′)∫𝑑𝑑𝒙𝒙 𝑒𝑒−2𝜋𝜋𝜋𝜋(𝒑𝒑−𝒒𝒒)⋅𝒙𝒙 ∫ 𝑑𝑑𝒙𝒙′  𝑒𝑒−2𝜋𝜋𝜋𝜋(𝒒𝒒−𝒑𝒑
′)⋅𝒙𝒙′  . (10.8) 

The integrals over 𝒙𝒙 and 𝒙𝒙′ give delta functions 𝛿𝛿(𝒑𝒑 − 𝒒𝒒) and 𝛿𝛿(𝒒𝒒 − 𝒑𝒑′), respectively, so 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑 𝛿̂𝛿∗(𝒑𝒑)𝑩𝑩�−1(𝒑𝒑)𝛿̂𝛿(𝒑𝒑) . (10.9) 

Note that evaluation of 𝐽𝐽𝑏𝑏 in wavenumber space now requires a single two-dimensional integration, whereas 
its evaluation in position space according to (10.6) requires a double two-dimensional integral. Therefore 𝐽𝐽𝑏𝑏 is 
calculated much more efficient in wavenumber space than in position space if the background error variances 
are constant and the background error correlations are a function of distance only. In fact, the number of 
integrations could be reduced even further when going to polar coordinates, since actually 𝑩𝑩−1 =
𝑩𝑩−1(�𝒙𝒙 − 𝒙𝒙′�). This, however, would lead to some implementational problems since the FFT algorithm used 
for the Fourier transforms is restricted to Cartesian coordinates. 

Flow dependent background errors 
The case of flow dependent background errors (background errors that vary with position) while the 
background error correlation is a function of distance (so the shape of the background error covariance is 
constant) is in fact quite simple. The background covariance matrix can be factored as 𝑩𝑩(𝒙𝒙,𝒙𝒙′) = 𝜮𝜮(𝒙𝒙)𝜞𝜞(𝒙𝒙 −
𝒙𝒙′)𝜮𝜮(𝒙𝒙′), see (3.13). Since 𝑩𝑩 is symmetric in its arguments, one can write 

 𝑩𝑩−1(𝒙𝒙,𝒙𝒙′) = 𝑩𝑩−1(𝒙𝒙′,𝒙𝒙) = 𝜮𝜮−1(𝒙𝒙)𝜞𝜞−1(𝒙𝒙 − 𝒙𝒙′)𝜮𝜮−1(𝒙𝒙′) . (10.10) 

Substituting this in (10.1) yields 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′ 𝛿𝛿∗(𝒙𝒙)𝜮𝜮−1(𝒙𝒙)𝜞𝜞−1(𝒙𝒙 − 𝒙𝒙′)𝜮𝜮−1(𝒙𝒙′)𝛿𝛿(𝒙𝒙′) . (10.11) 

Putting 𝛥𝛥(𝒙𝒙) = 𝜮𝜮−1(𝒙𝒙)𝛿𝛿(𝒙𝒙), so 𝛥𝛥∗(𝒙𝒙) = (𝜮𝜮−1(𝒙𝒙)𝛿𝛿(𝒙𝒙))∗ = 𝛿𝛿∗(𝒙𝒙)𝜮𝜮−1(𝒙𝒙) since 𝜮𝜮 is real, and substituting in 
(10.11) results in 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒙𝒙∫𝑑𝑑𝒙𝒙′ 𝛥𝛥∗(𝒙𝒙)𝜞𝜞−1(𝒙𝒙 − 𝒙𝒙′)𝛥𝛥(𝒙𝒙′) . (10.12) 

This is the same as (10.6) with 𝛿𝛿 → 𝛥𝛥 and 𝜝𝜝 → 𝜞𝜞. Repeating the Fourier transformations (10.7) and (10.8) 
immediately yields the final result 

 𝐽𝐽𝑏𝑏 = ∫𝑑𝑑𝒑𝒑 𝛥̂𝛥∗(𝒑𝒑)𝜞𝜞�−1(𝒑𝒑)𝛥̂𝛥(𝒑𝒑) . (10.13) 

This shows that implementation of position dependent background errors in 2DVAR is very simple: the 
background covariance matrix must be replaced by the background error correlation matrix, and the velocity 
increments must be multiplied by the standard deviation of the background error. 
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Flow dependent background errors may be obtained from the ECMWF Ensemble Data Assimilation system 
[Bonavita et al., 2012] or from the scatterometer data itself using MLE and singularity exponents [Lin et al., 
2016]. 
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Appendix A   Fourier transformation 
Continuous case 
Suppose the two-dimensional surface wind field 𝒗𝒗 in the spatial domain is a continuous function of the 
horizontal coordinates 𝑥𝑥 and𝑦𝑦, 𝒗𝒗 = (𝑢𝑢(𝑥𝑥,𝑦𝑦), 𝑣𝑣(𝑥𝑥, 𝑦𝑦)). Define the Fourier transforms 𝑢𝑢�  and 𝑣𝑣� according to 
[Press et al., 1988] 

 𝑢𝑢�(𝑝𝑝, 𝑞𝑞) = 𝐹𝐹[𝑢𝑢](𝑝𝑝, 𝑞𝑞) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (A.1a) 

 𝑣𝑣�(𝑝𝑝, 𝑞𝑞) = 𝐹𝐹[𝑣𝑣](𝑝𝑝, 𝑞𝑞) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (A.1b) 

with 𝑝𝑝and 𝑞𝑞spatial frequencies, and the integration extending over the whole real axis. The hats indicate 
functions that are defined in the frequency domain; the square brackets indicate the argument of an operator. 
Note that 𝑝𝑝and 𝑞𝑞are spatial frequencies and not spatial wave numbers, because of the definition of the 
exponential in the Fourier transform. The inverse transform reads 

 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐹𝐹−1[𝑢𝑢�](𝑥𝑥,𝑦𝑦) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝑖𝑖(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (A.2a) 

 𝑣𝑣(𝑥𝑥,𝑦𝑦) = 𝐹𝐹−1[𝑣𝑣�](𝑥𝑥,𝑦𝑦) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) . (A.2b) 

This can be easily shown by substituting (A.1a) in (A.2a) and (A.1b) in (A.2b) and using 

 ∫𝑑𝑑𝑑𝑑 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋(𝑥𝑥−𝑥𝑥 ′) = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥 ′) ,  (A.3) 

the function on the right-hand side of (A.3) being the Dirac delta function. Note that no normalization constant 
is involved, because it is included as the factor 2𝜋𝜋in the exponentials. 

Discrete case 
The discrete 2D Fourier transform on a position grid with grid size 𝛥𝛥reads (see, e.g., Press et al, [1988]) 

 𝑢𝑢�𝑚𝑚,𝑛𝑛 = 𝛥𝛥2 ∑ ∑ 𝑢𝑢𝑘𝑘,𝑙𝑙𝑒𝑒
2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑙𝑙=0  ,𝑀𝑀−1
𝑘𝑘=0  (A.4) 

where 𝑢𝑢𝑘𝑘,𝑙𝑙 = 𝑢𝑢(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑙𝑙) with 𝑥𝑥𝑘𝑘 = 𝑘𝑘𝑘𝑘 and 𝑦𝑦𝑙𝑙 = 𝑙𝑙𝑙𝑙, 𝑘𝑘 running from 0 to 𝑁𝑁 − 1 and 𝑙𝑙 from 0 to 𝑀𝑀 − 1. The 
summation in the right-hand side of (A4) is performed by a FFT algorithm. The normalization factor 𝛥𝛥2 has 
to be added explicitly in the 2DVAR software. 

The inverse discrete 2D Fourier transform reads 

 𝑢𝑢𝑘𝑘,𝑙𝑙 = 1
𝑁𝑁𝑁𝑁𝛥𝛥2

∑ ∑ 𝑢𝑢�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0  ,𝑀𝑀−1
𝑚𝑚=0  (A.5) 

which is shown easily to hold by substitution of (A.4) in (A.5) or vice versa. As with the forward transform, 
the normalization factor in front of the summation is not set by the FFT algorithm, so it has to be included 
explicitly in the 2DVAR code. 

Note that the normalization factor of the forward discrete transform equals the product of the grid sizes in the 
spatial domain, 𝛥𝛥2 = 𝛥𝛥𝑥𝑥𝛥𝛥𝑦𝑦, while the normalization factor of the inverse discrete transform equals the product 
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of the grid sizes in the frequency domain, (𝑁𝑁𝑁𝑁)−1(𝑀𝑀𝑀𝑀)−1 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥. With these definitions, the summations 
are easily recognized as the corresponding integrals evaluated with the simple first-order formula (left Riemann 
sum) 

 ∫ 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥) ≈ 𝛥𝛥∑ 𝑓𝑓(𝑥𝑥𝑛𝑛)𝑁𝑁−1
𝑛𝑛=0  ,𝑏𝑏

𝑎𝑎  (A.6) 

with 𝑥𝑥0 = 𝑎𝑎, 𝑥𝑥𝑁𝑁 = 𝑏𝑏, and 

 𝛥𝛥 = 𝑏𝑏−𝑎𝑎
𝑁𝑁

 . (A.7) 
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Appendix B   Helmholtz transformation 
Continuous boundary conditions 
The operator 𝑯𝑯 = (𝐻𝐻1,𝐻𝐻2) is in the spatial domain defined as 

 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 , (B.1a) 

 𝑣𝑣(𝑥𝑥,𝑦𝑦) = 𝐻𝐻2[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 , (B.1b) 

with 𝜒𝜒 the velocity potential and 𝜓𝜓 the stream function. The inverse operator 𝑯𝑯−1 = (𝐻𝐻1−1,𝐻𝐻2−1) satisfies 

 𝜒𝜒(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1−1[𝑢𝑢, 𝑣𝑣](𝑥𝑥,𝑦𝑦) , (B.2a) 

 𝜓𝜓(𝑥𝑥,𝑦𝑦) = 𝐻𝐻2−1[𝑢𝑢, 𝑣𝑣](𝑥𝑥,𝑦𝑦) . (B.2b) 

The explicit form of the operator and its inverse is more easily evaluated in the frequency domain., especially 
for numerical applications. 

From (B.2a) and (A.2a) it follows that 

 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝐻𝐻1 �𝐹𝐹−1[𝜒̂𝜒],𝐹𝐹−1�𝜓𝜓��� (𝑥𝑥,𝑦𝑦) = 

   =
𝜕𝜕𝐹𝐹−1[𝜒̂𝜒](𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝐹𝐹−1�𝜓𝜓��(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
= 

   = 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) − 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) .  

Note that the arguments of the functions in the frequency domain have been omitted at some places to keep 
the equations readable. The order of differentiation and integration may be interchanged for well behaving 
functions, so 

 𝑢𝑢(𝑥𝑥,𝑦𝑦) = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (−2𝜋𝜋𝜋𝜋𝜋𝜋)𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) − � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (−2𝜋𝜋𝜋𝜋𝜋𝜋)𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = 

   = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ�1(𝑝𝑝, 𝑞𝑞))𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) − � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ�2(𝑝𝑝, 𝑞𝑞)𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = 

   = 𝐹𝐹−1[ℎ�1𝜒̂𝜒](𝑥𝑥,𝑦𝑦) − 𝐹𝐹−1[ℎ�2𝜓𝜓�](𝑥𝑥,𝑦𝑦) , 

with 

 ℎ�1(𝑝𝑝, 𝑞𝑞) = −2𝜋𝜋𝜋𝜋𝜋𝜋 , 

 ℎ�2(𝑝𝑝, 𝑞𝑞) = −2𝜋𝜋𝜋𝜋𝜋𝜋 . (B.3) 

From the previous equations one finds in the spatial domain, dropping the arguments of all functions 

 𝐻𝐻1[𝐹𝐹−1[𝜒̂𝜒],𝐹𝐹−1[𝜓𝜓�]] = 𝐹𝐹−1[ℎ�1𝜒̂𝜒] − 𝐹𝐹−1[ℎ�2𝜓𝜓�] . (B.4) 

In the same way one obtains 

 𝑣𝑣(𝑥𝑥,𝑦𝑦) = 𝐻𝐻2[𝜒𝜒,𝜓𝜓](𝑥𝑥,𝑦𝑦) = 𝐻𝐻2 �𝐹𝐹−1[𝜒̂𝜒],𝐹𝐹−1�𝜓𝜓��� (𝑥𝑥,𝑦𝑦) = 
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   =
𝜕𝜕𝐹𝐹−1[𝜒̂𝜒](𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝐹𝐹−1�𝜓𝜓��(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
= 

   =
𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) +
𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = 

   = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (−2𝜋𝜋𝜋𝜋𝜋𝜋)𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) + � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (−2𝜋𝜋𝜋𝜋𝜋𝜋)𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = 

   = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ�2(𝑝𝑝, 𝑞𝑞))𝜒̂𝜒(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) + � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ�1(𝑝𝑝, 𝑞𝑞)𝜓𝜓�(𝑝𝑝, 𝑞𝑞)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = 

   = 𝐹𝐹−1[ℎ�2𝜒̂𝜒](𝑥𝑥,𝑦𝑦) + 𝐹𝐹−1[ℎ�1𝜓𝜓�](𝑥𝑥,𝑦𝑦) . 

So, again dropping the arguments of the functions 

 𝐻𝐻2[𝐹𝐹−1[𝜒̂𝜒],𝐹𝐹−1[𝜓𝜓�]] = 𝐹𝐹−1[ℎ�2𝜒̂𝜒] + 𝐹𝐹−1[ℎ�1𝜓𝜓�] . (B.5) 

In what follows the function arguments are dropped when possible. For functions in the spatial domain the 
arguments are assumed to be (𝑥𝑥,𝑦𝑦), and for functions in the frequency domain (𝑝𝑝, 𝑞𝑞), unless explicitly stated 
otherwise. 

Using the fact that the inverse Fourier operator is linear, (B.4) can be cast into the form 

 𝑢𝑢 = 𝐹𝐹−1[ℎ�1𝜒̂𝜒 − ℎ�2𝜓𝜓�] . 

Applying a Fourier transformation to both sides yields in the frequency domain 

 𝑢𝑢� = ℎ�1𝜒̂𝜒 − ℎ�2𝜓𝜓� . (B.6a) 

Along the same lines one obtains 

 𝑣𝑣� = ℎ�2𝜒̂𝜒 + ℎ�1𝜓𝜓� . (B.6b) 

Equation (B.6) shows that the Helmholtz operator is a simple linear transformation in the frequency domain. 
Its inverse is easily found by solving (B.6) for 𝜒̂𝜒 and 𝜓𝜓�. This yields 

 𝜒̂𝜒 = ℎ�1
−1𝑢𝑢� + ℎ�2

−1𝑣𝑣� , (B.7a) 

 𝜓𝜓� = −ℎ�2
−1𝑢𝑢� + ℎ�1

−1𝑣𝑣� , (B.7b) 

with 

 ℎ�1
−1(𝑝𝑝, 𝑞𝑞) = 𝑖𝑖

2𝜋𝜋
𝑝𝑝

𝑝𝑝2+𝑞𝑞2
 , (B.8a) 

 ℎ�2
−1(𝑝𝑝, 𝑞𝑞) = 𝑖𝑖

2𝜋𝜋
𝑞𝑞

𝑝𝑝2+𝑞𝑞2
 . (B.8b) 

These equations are easily discretized for application on the 2DVAR grid. 

Periodic boundary conditions 
De Vries et al. derive the Helmholtz transformation equations on a discrete grid, since in 2DVAR the wind 
speed components and the potentials are evaluated on discrete grids. Their derivation is repeated below, and 
their results differ from those obtained in the preceding paragraph. This is because they implicitly assume 
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periodic boundary conditions: the equations are discretized and evaluated on a finite grid, whereas in the 
previous paragraph the equations were evaluated in infinite space and discretized afterwards. 

The forward Helmholtz transformation in the formulation of De Vries et al. reads  

 𝑢𝑢𝑘𝑘,𝑙𝑙 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙

 , (B.9a) 

 𝑣𝑣𝑘𝑘,𝑙𝑙 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙

 , (B.9b) 

with the subscripts 𝑘𝑘, 𝑙𝑙 indicating that the quantity is to be evaluated at the grid point with indices 𝑘𝑘, 𝑙𝑙. On a 
discrete grid, the derivatives of a function 𝑓𝑓with respect to 𝑥𝑥 and 𝑦𝑦 reads [Abramowitz and Stegun, 1970, 
25.3.21] 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙

= 𝑓𝑓𝑘𝑘+1,𝑙𝑙−𝑓𝑓𝑘𝑘−1,𝑙𝑙
2𝛥𝛥

 ,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑘𝑘,𝑙𝑙

= 𝑓𝑓𝑘𝑘,𝑙𝑙+1−𝑓𝑓𝑘𝑘,𝑙𝑙−1
2𝛥𝛥

 ,  (B.10) 

where 𝛥𝛥 is the grid size which is assumed the same in both directions. Substitution of (B.10) in (B.9a) and 
replacing all quantities by their discrete inverse Fourier transforms yields 

 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝑢𝑢�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0 =𝑀𝑀−1
𝑚𝑚=0  

 = 1
2𝛥𝛥
� 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�(𝑘𝑘+1)𝑚𝑚

𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1
𝑛𝑛=0 − 1

𝑀𝑀𝑀𝑀𝛥𝛥2
∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�(𝑘𝑘−1)𝑚𝑚
𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � + 

 − 1
2𝛥𝛥
� 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +(𝑙𝑙+1)𝑛𝑛

𝑁𝑁 �𝑁𝑁−1
𝑛𝑛=0 − 1

𝑀𝑀𝑀𝑀𝛥𝛥2
∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +(𝑙𝑙−1)𝑛𝑛
𝑁𝑁 �𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � . (B.11) 

The normalization factors of the discrete inverse Fourier transform cancel. The exponentials at the right-hand 
side of (B.11) can be expanded to yield 

 ∑ ∑ 𝑢𝑢�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0 =𝑀𝑀−1
𝑚𝑚=0  

   1
2𝛥𝛥
�∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1
𝑛𝑛=0 𝑒𝑒2𝜋𝜋𝜋𝜋

𝑚𝑚
𝑀𝑀 − ∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑒𝑒−2𝜋𝜋𝜋𝜋
𝑚𝑚
𝑀𝑀𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � + 

  − 1
2𝛥𝛥
�∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑒𝑒2𝜋𝜋𝜋𝜋
𝑛𝑛
𝑁𝑁𝑁𝑁−1

𝑛𝑛=0 − ∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑒𝑒−2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑁𝑁𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � . (B.12) 

This can be simplified to 

 ∑ ∑ 𝑢𝑢�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0 =𝑀𝑀−1
𝑚𝑚=0 ∑ ∑ 𝑒𝑒−2𝜋𝜋𝜋𝜋�

𝑘𝑘𝑘𝑘
𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0  ×𝑀𝑀−1
𝑚𝑚=0  

    �𝜒̂𝜒𝑚𝑚,𝑛𝑛 �
𝑒𝑒−2𝜋𝜋𝜋𝜋

𝑚𝑚
𝑀𝑀−𝑒𝑒2𝜋𝜋𝜋𝜋

𝑚𝑚
𝑀𝑀

2𝛥𝛥
� − 𝜓𝜓�𝑚𝑚,𝑛𝑛 �

𝑒𝑒−2𝜋𝜋𝜋𝜋
𝑛𝑛
𝑁𝑁−𝑒𝑒2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑁𝑁

2𝛥𝛥
�� . (B.13) 

This should hold for all 𝑚𝑚 and 𝑛𝑛, so the summations and the common phase factor can be dropped. This results 
in 

 𝑢𝑢�𝑚𝑚,𝑛𝑛 = 𝜇𝜇𝑚𝑚𝜒̂𝜒𝑚𝑚,𝑛𝑛 − 𝜈𝜈𝑛𝑛𝜓𝜓�𝑚𝑚,𝑛𝑛 , (B.14) 

with 
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 𝜇𝜇𝑚𝑚 = 1
2𝛥𝛥
�𝑒𝑒−2𝜋𝜋𝜋𝜋

𝑚𝑚
𝑀𝑀 − 𝑒𝑒2𝜋𝜋𝜋𝜋

𝑚𝑚
𝑀𝑀� = −𝑖𝑖

2𝛥𝛥
𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋𝑚𝑚

𝑀𝑀
� , (B.15a) 

 𝜈𝜈𝑛𝑛 = 1
2𝛥𝛥
�𝑒𝑒−2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑁𝑁 − 𝑒𝑒2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑁𝑁� = −𝑖𝑖

2𝛥𝛥
𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋 𝑛𝑛

𝑁𝑁
�  .  (B.15b) 

In the same way, (B.9b) and (B.10) yield 

 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝑣𝑣�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑛𝑛𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0 =𝑀𝑀−1
𝑚𝑚=0  

  1
2𝛥𝛥
� 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +(𝑙𝑙+1)𝑛𝑛

𝑁𝑁 �𝑁𝑁−1
𝑛𝑛=0 − 1

𝑀𝑀𝑀𝑀𝛥𝛥2
∑ ∑ 𝜒̂𝜒𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +(𝑙𝑙−1)𝑛𝑛
𝑁𝑁 �𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � + 

 + 1
2𝛥𝛥
� 1
𝑀𝑀𝑀𝑀𝛥𝛥2

∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�(𝑘𝑘+1)𝑚𝑚

𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1
𝑛𝑛=0 − 1

𝑀𝑀𝑀𝑀𝛥𝛥2
∑ ∑ 𝜓𝜓�𝑚𝑚,𝑛𝑛𝑒𝑒

−2𝜋𝜋𝜋𝜋�(𝑘𝑘−1)𝑚𝑚
𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀−1
𝑚𝑚=0 � . (B.16) 

This can be written as 

 ∑ ∑ 𝑣𝑣�𝑚𝑚,𝑛𝑛𝑒𝑒
−2𝜋𝜋𝜋𝜋�𝑘𝑘𝑘𝑘𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0 =𝑀𝑀−1
𝑚𝑚=0 ∑ ∑ 𝑒𝑒−2𝜋𝜋𝜋𝜋�

𝑘𝑘𝑘𝑘
𝑀𝑀 +𝑙𝑙𝑙𝑙𝑁𝑁�𝑁𝑁−1

𝑛𝑛=0
𝑀𝑀−1
𝑚𝑚=0 × 

       1
2𝛥𝛥
�𝜒̂𝜒𝑚𝑚,𝑛𝑛 �𝑒𝑒

−2𝜋𝜋𝜋𝜋𝑛𝑛𝑁𝑁 − 𝑒𝑒2𝜋𝜋𝜋𝜋
𝑛𝑛
𝑁𝑁� + 𝜓𝜓�𝑚𝑚,𝑛𝑛 �𝑒𝑒

−2𝜋𝜋𝜋𝜋𝑚𝑚𝑀𝑀 − 𝑒𝑒2𝜋𝜋𝜋𝜋
𝑚𝑚
𝑀𝑀�� . (B.17) 

This simplifies to 

 𝑣𝑣�𝑚𝑚,𝑛𝑛 = 𝜈𝜈𝑛𝑛𝜒̂𝜒𝑚𝑚,𝑛𝑛 + 𝜇𝜇𝑚𝑚𝜓𝜓�𝑚𝑚,𝑛𝑛 , (B.18) 

with 𝜇𝜇 and 𝜈𝜈 given by (B.15). 

Comparison 
Figure B.1 shows the Helmholtz transformation coefficients ℎ1 on the 2DVAR spatial frequency grid for the 
continuous boundary conditions (blue curve) and the periodic boundary conditions (red curve, with ℎ1 = 𝜇𝜇). 
The dots indicate the spatial frequency grid points. Figure B.1 shows that the two boundary conditions yield 
very similar transformation coefficients for low spatial frequencies (𝑝𝑝 ≈ 0), but differences arise at higher 
frequencies. With periodic boundary conditions the transformation coefficients go to zero at high (positive and 
negative) frequencies, whereas the coefficients with continuous boundary conditions reach their extreme value 
there. The effect of the periodic boundary conditions is similar to that of applying a filter like the Hanning 
filter in an FFT operation: the spectrum is forced to zero at the ends of the interval. Since the background 
contribution to the cost function is calculated in the frequency domain, one may expect that the periodic 
boundary conditions yield smaller values than the continuous ones. This is indeed the case: in a single 
observation test the background contribution to the cost function at the solution is about 20% smaller when 
using periodic boundary conditions compared to the continuous boundary conditions. 

Default 2DVAR uses the continuous boundary conditions. This is equivalent to taking a Fourier transform. 
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Figure B.1   Helmholtz transformation coefficients on the 2DVAR spatial frequency grid for the continuous boundary 
conditions (blue) and the discrete boundary conditions (red). 
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Appendix C   Helmholtz transformation in 
three dimensions 
In three dimensions, any vector field 𝑽𝑽 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) can be written as the sum of the gradient of a scalar potential 
𝜒𝜒 and the rotation of a vector potential 𝜳𝜳 = (𝛹𝛹𝑥𝑥 ,𝛹𝛹𝑦𝑦,𝛹𝛹𝑧𝑧) as 

 𝑽𝑽 = 𝛻𝛻𝜒𝜒 + 𝛻𝛻 × 𝜳𝜳 . (C.1) 

Written out in Cartesian components, the terms in the right-hand side of (A.1) read 

 𝛻𝛻𝜒𝜒 = 𝒆𝒆�𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒆𝒆�𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒆𝒆�𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , (C.2a) 

 𝛻𝛻 × 𝜳𝜳 = 𝒆𝒆�𝑥𝑥 �
𝜕𝜕𝛹𝛹𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝛹𝛹𝑧𝑧
𝜕𝜕𝜕𝜕
� + 𝒆𝒆�𝑦𝑦 �

𝜕𝜕𝛹𝛹𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝛹𝛹𝑥𝑥
𝜕𝜕𝜕𝜕
� + 𝒆𝒆�𝑧𝑧 �

𝜕𝜕𝛹𝛹𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝛹𝛹𝑦𝑦
𝜕𝜕𝜕𝜕
� , (C.2b) 

with 𝒆𝒆�𝑥𝑥,𝒆𝒆�𝑦𝑦, and 𝒆𝒆�𝑧𝑧 the unit vectors in the x-, y-, and z-direction, respectively. 

In two dimensions, all z-components vanish. Moreover, the potentials no longer depend on z, so all derivatives 
to z vanish. As a result 

 𝛻𝛻𝜒𝜒|2 = 𝒆𝒆�𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒆𝒆�𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , (C.3a) 

 𝛻𝛻 × 𝜳𝜳|2 = 𝒆𝒆�𝑥𝑥 �−
𝜕𝜕𝛹𝛹𝑧𝑧
𝜕𝜕𝜕𝜕
� + 𝒆𝒆�𝑦𝑦 �

𝜕𝜕𝛹𝛹𝑧𝑧
𝜕𝜕𝜕𝜕
� , (C.3b) 

with the subscript 2 indicating the transition to two dimensions. Note that only 𝛹𝛹𝑧𝑧 contributes to the vector 
field. Renaming it to 𝜓𝜓, dropping the subscript, and replacing the general vector field 𝑽𝑽 by the two-dimensional 
wind field (𝑢𝑢, 𝑣𝑣), one obtains from (C.1) and (C.3) 

 𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 ,  𝑣𝑣 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 . (C.4) 

For a wind field, 𝜒𝜒 is referred to as the velocity potential and 𝜓𝜓 as the stream function. 
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Appendix D   Adjoint model 
Suppose we have a cost function 𝐽𝐽 defined in the spatial domain as a function of a positional increment control 
vector 𝒙𝒙 as 𝐽𝐽 = 𝐽𝐽(𝒙𝒙). Similarly, it can be defined in the frequency domain as a function of a spectral increment 
control vector 𝝃𝝃 as 𝐽𝐽 = 𝐽𝐽(𝝃𝝃). The two representations are connected by the unconditioning transformation 
𝑼𝑼according to 𝒙𝒙 = 𝑼𝑼𝑼𝑼. Note that in the main text the positional increment control vector is denoted as 𝛿𝛿𝒙𝒙. 

The sensitivity of the cost function to changes in 𝒙𝒙 can be studied by expanding it in a Taylor series around a 
point 𝒙𝒙0 and omitting terms of the second and higher order [Errico,1997; Giering and Kaminski, 1998] 

 𝐽𝐽(𝒙𝒙) = 𝐽𝐽(𝒙𝒙0) + 𝑑𝑑𝑑𝑑 , (D.1) 

with 

 𝑑𝑑𝑑𝑑 = 𝛻𝛻𝑥𝑥𝐽𝐽 ⋅ (𝒙𝒙 − 𝒙𝒙0) = 𝛻𝛻𝑥𝑥𝐽𝐽 ⋅ 𝑑𝑑𝒙𝒙 . (D.2) 

This is a scalar product, so (D.2) can be written as 

 𝑑𝑑𝑑𝑑 = ⟨𝛻𝛻𝑥𝑥𝐽𝐽,𝑑𝑑𝒙𝒙⟩ = ⟨𝛻𝛻𝑥𝑥𝐽𝐽,𝑼𝑼𝑑𝑑𝝃𝝃⟩ , (D.3) 

assuming that 𝑑𝑑𝒙𝒙 = 𝑼𝑼𝑑𝑑𝝃𝝃. 

Now the adjoint of 𝑼𝑼 is defined as the operator 𝑼𝑼∗ that satisfies 

 ⟨𝒙𝒙1,𝑼𝑼𝒙𝒙2⟩ = ⟨𝑼𝑼∗𝒙𝒙1,𝒙𝒙2⟩ , (D.4) 

for all 𝒙𝒙1 and 𝒙𝒙2. In a finite dimensional space, which is the case for the control space (i.e., the space in which 
the control vectors are defined), the adjoint equals the complex conjugate of the transpose, 

 𝑼𝑼∗ = 𝑼𝑼𝑇𝑇  . (D.5) 

Applying this to (D.4) yields 

 𝑑𝑑𝑑𝑑 = ⟨𝑼𝑼∗𝛻𝛻𝑥𝑥𝐽𝐽,𝑑𝑑𝝃𝝃⟩ . (D.6) 

This can be recognized as the scalar product in the frequency domain. with 𝑼𝑼∗𝛻𝛻𝑥𝑥𝐽𝐽 the gradient of 𝐽𝐽 in the 
frequency domain. Therefore 

 𝛻𝛻𝜉𝜉𝐽𝐽 = 𝑼𝑼∗𝛻𝛻𝑥𝑥𝐽𝐽 . (D.7) 

This gives the relation between the gradients of the cost function in both representations. The gradient of the 
observation term in the 2DVAR cost function is evaluated in the spatial domain, and can be transformed to the 
frequency domain using (D.7). Note that the cost function is invariant under change of domain. 

In chapter 3, equation (3.17) it was shown that the unconditioning transformation reads 

 𝑼𝑼 = 𝐹𝐹−1𝑯𝑯𝑩𝑩𝜒𝜒� .𝜓𝜓�
1/2  . (D.8) 

From the definition of the adjoint it follows that 

 𝑼𝑼∗ = �𝐹𝐹−1𝑯𝑯𝑩𝑩𝜒𝜒� .𝜓𝜓�
1/2�

∗
= �𝑩𝑩𝜒𝜒� .𝜓𝜓�

1/2�
∗
𝑯𝑯∗(𝐹𝐹−1)∗ . (D.9) 
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The inverse Fourier transform is defined in appendix A. It is easily shown that (𝐹𝐹−1)∗ = 𝐹𝐹. The Helmholtz 
transformation involves multiplication of the spectra components with an imaginary factor, which changes 
sign in the adjoint case. The normalization involves multiplication with a real factor. With this, (D.9) can be 
written as 

 𝑼𝑼∗ = 𝑩𝑩𝜒𝜒� .𝜓𝜓�
1/2𝑯𝑯∗𝐹𝐹−1 . (D.10) 

Adjoint of the Helmholz transformation 
The adjoint of the Helmholz transformation in Fourier space, 𝐻𝐻∗, can be found from (3.6) by writing it as 

 �𝑡̂𝑡
𝑙𝑙
� = 𝑯𝑯�

𝜒̂𝜒
𝜓𝜓�� = −2𝜋𝜋𝜋𝜋 �

𝑝𝑝 −𝑞𝑞
𝑞𝑞 𝑝𝑝 � �

𝜒̂𝜒
𝜓𝜓�� , (D.11) 

omitting the arguments of the velocities and the potentials. From (D.11) it easily follows that 

 𝑯𝑯∗ = 2𝜋𝜋𝜋𝜋 �
𝑝𝑝 𝑞𝑞
−𝑞𝑞 𝑝𝑝� . (D.12) 

The adjoint transformation reads 

 �
𝑑𝑑𝜒̂𝜒
𝑑𝑑𝜓𝜓�� = 𝑯𝑯∗ �𝑑𝑑𝑡̂𝑡

𝑑𝑑𝑙𝑙
� , (D.13) 

or expanded in components 

 𝑑𝑑𝜒̂𝜒 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑡̂𝑡 + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑙𝑙 , (D.14a) 

 𝑑𝑑𝜓𝜓� = −2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑡̂𝑡 + 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑙𝑙 . (D.14b) 
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 Appendix E   Single Observation Analysis 
Basic principles 
Suppose the observation increment is denoted by 𝑜𝑜, the background increment by 𝑏𝑏, and the analysis increment 
by 𝑎𝑎. The cost function can be written as 

 𝐽𝐽𝑡𝑡 = 𝐽𝐽𝑜𝑜 + 𝐽𝐽𝑏𝑏 = (𝑜𝑜−𝑎𝑎)2

𝜀𝜀𝑂𝑂
2 + (𝑏𝑏−𝑎𝑎)2

𝜀𝜀𝐵𝐵
2  , (E.1) 

where 𝜀𝜀𝑂𝑂 stands for the standard deviation of the observation error and 𝜀𝜀𝐵𝐵that of the background error. Equation 
(E.1) is at a higher level of abstraction than the remainder of this report, but that simplifies the derivation. The 
optimal analysis is obtained by minimizing the total cost function with respect to the analysis. At the optimal 
analysis increment the derivative of the total cost function should be zero, 

 𝜕𝜕𝐽𝐽𝑡𝑡
𝜕𝜕𝜕𝜕

= 2(𝑜𝑜−𝑎𝑎)
𝜀𝜀𝑂𝑂
2 + 2(𝑏𝑏−𝑎𝑎)

𝜀𝜀𝐵𝐵
2 = 2 𝜀𝜀𝐵𝐵

2𝑜𝑜+𝜀𝜀𝑂𝑂
2𝑏𝑏−(𝜀𝜀𝑂𝑂

2+𝜀𝜀𝐵𝐵
2 )𝑎𝑎

𝜀𝜀𝑂𝑂
2 𝜀𝜀𝐵𝐵

2 = 0 . (E.2) 

This is satisfied for 

 𝑎𝑎 = 𝜀𝜀𝐵𝐵
2𝑜𝑜+𝜀𝜀𝑂𝑂

2𝑏𝑏
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2  . (E.3) 

The optimal analysis increment is just the weighted average of the observation and the background increments. 
For 𝜀𝜀𝐵𝐵 = 𝜀𝜀𝑂𝑂 the single observation solution reduces to 𝑎𝑎 = 1

2
(𝑜𝑜 − 𝑏𝑏). 

Starting with zero background and analysis increments, the only contribution to the initial cost function is from 
the observation part, so it reads 

 𝐽𝐽𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐽𝐽𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑜𝑜2

𝜀𝜀𝑂𝑂
2  . (E.4) 

At the optimal analysis increment it reads (substitute (E.3) into (E.1)) 

 𝐽𝐽𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓 = (𝑜𝑜−𝑎𝑎)2

𝜀𝜀𝑂𝑂
2 + (𝑏𝑏−𝑎𝑎)2

𝜀𝜀𝐵𝐵
2 = (𝑜𝑜−𝑏𝑏)2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2  . (E.5) 

The initial gradient reads 

 𝛻𝛻𝐽𝐽𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛻𝛻𝐽𝐽𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝑜𝑜
𝜀𝜀𝑂𝑂
2  . (E.6) 

The total gradient at the optimal analysis, 𝛻𝛻𝐽𝐽𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓 = 𝛻𝛻𝐽𝐽𝑂𝑂

𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛻𝛻𝐽𝐽𝐵𝐵
𝑓𝑓𝑓𝑓𝑓𝑓 equals zero, so 𝛻𝛻𝐽𝐽𝑂𝑂

𝑓𝑓𝑓𝑓𝑓𝑓 = −𝛻𝛻𝐽𝐽𝐵𝐵
𝑓𝑓𝑓𝑓𝑓𝑓, and 

therefore  

 𝛻𝛻𝐽𝐽𝑂𝑂
𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜕𝜕𝐽𝐽𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝜕𝜕
�(𝑜𝑜−𝑏𝑏)2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 � = 2(𝑜𝑜−𝑏𝑏)
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 = −𝛻𝛻𝐽𝐽𝐵𝐵
𝑓𝑓𝑓𝑓𝑓𝑓 . (E.7) 

Since in the incremental approach 𝑜𝑜 − 𝑏𝑏 = 𝑜𝑜, (E.6) and (E.7) can be combined into 

 𝛻𝛻𝐽𝐽𝐵𝐵
𝑓𝑓𝑓𝑓𝑓𝑓 = −2𝑜𝑜

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 = −𝜀𝜀𝑂𝑂
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝛻𝛻𝐽𝐽𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = −𝜀𝜀𝑂𝑂
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝛻𝛻𝐽𝐽𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖  , (E.8) 
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where has been used that (E.6) is equivalent to 𝑜𝑜 = 1
2
𝜀𝜀𝑂𝑂2𝛻𝛻𝐽𝐽𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖. Equation (E.8) relates the gradient in the final 

background cost to that of the initial observation cost. According to (3.18) - (3.20), the gradient in the final 
background cost is directly related to the analysis wind components 𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) and 𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞), because in 
terms of the control vector 𝝃𝝃 one has 𝐽𝐽𝐵𝐵 = 𝝃𝝃 ⋅ 𝝃𝝃, so 𝛻𝛻𝐽𝐽𝐵𝐵 = 2𝝃𝝃. This holds during the whole minimisation 
procedure, so it also holds for the final cost function gradient, 𝛻𝛻𝐽𝐽𝐵𝐵

𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝝃𝝃𝑓𝑓𝑓𝑓𝑓𝑓. With the help of (E.8), the final 
control vector 𝝃𝝃𝑓𝑓𝑓𝑓𝑓𝑓, i.e., the final values of 𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) and 𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞), can be related to the initial observation 
cost function. 

An analytic expression of the single observation analysis can be obtained from the following steps: 
• Start with the gradient of the initial observation cost function; 
• Transform this to the normalized stream function and velocity potential in the spatial frequency domain 

using the adjoint of the unconditioning transformation 𝑼𝑼∗ = 𝑩𝑩𝜒𝜒� .𝜓𝜓�
1/2𝑯𝑯∗𝐹𝐹−1 as given by (4.5) and (D.10); 

• Apply relation (E.8) to write this in terms of the final analysis stream function and velocity potential; 
• Transform this to the analysis wind field with the unconditioning transformation (3.17), 𝑼𝑼 = 𝐹𝐹−1𝑯𝑯𝑩𝑩𝜒𝜒� .𝜓𝜓�

1/2 . 

Analytic expression for Gaussian structure functions 
Suppose a single wind vector observation (𝑡𝑡0, 𝑙𝑙0) is available at the point (𝑥𝑥, 𝑦𝑦) = (0,0). The components of 
the gradient of the observational part of the cost function, denoted as 𝑑𝑑𝑡𝑡𝑂𝑂 and 𝑑𝑑𝑙𝑙𝑂𝑂, can be obtained from (4.10) 
(or (E.6)) as 

 𝑑𝑑𝑡𝑡𝑂𝑂(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐽𝐽𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕
= −2𝑡𝑡0

𝜀𝜀𝑂𝑂
2 𝛿𝛿(𝑥𝑥,𝑦𝑦) ,  𝑑𝑑𝑙𝑙𝑂𝑂(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐽𝐽𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕
= −2𝑙𝑙0

𝜀𝜀𝑂𝑂
2 𝛿𝛿(𝑥𝑥,𝑦𝑦) , (E.9) 

with 𝛿𝛿(𝑥𝑥,𝑦𝑦) the Dirac delta function in two-dimensional position and 𝜀𝜀𝑂𝑂 = 𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑙𝑙 the standard deviation of 
the error in the observed wind speed components. The gradient has to be taken with respect to the observation 
increments 𝛿𝛿𝛿𝛿 and 𝛿𝛿𝛿𝛿. The delta function appears because the gradient is zero everywhere except at (0,0) where 
the observation is located. In this representation, the observation wind field is considered as a function in two-
dimensional position space rather than a discrete function on a two-dimensional grid. The notation 𝑑𝑑𝑡𝑡𝑂𝑂and 𝑑𝑑𝑙𝑙𝑂𝑂 
is introduced to simplify the notation and to keep in line with the 2DVAR code in genscat. 

Adjoint unconditioning transformation 

The components of the observation cost function gradient in spatial frequency space, 𝑑𝑑𝑢𝑢�𝑂𝑂 and 𝑑𝑑𝑣𝑣�𝑂𝑂, are found 
by applying the adjoint of the inverse Fourier transformation. This just equals the forward Fourier 
transformation (A.1). Due to the delta function, the integrals are easily evaluated, yielding 

 𝑑𝑑𝑢𝑢�𝑂𝑂(𝑝𝑝, 𝑞𝑞) = − � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  2𝑡𝑡0
𝜀𝜀𝑂𝑂
2 𝛿𝛿(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = −2𝑡𝑡0

𝜀𝜀𝑂𝑂
2  , (E.10a) 

 𝑑𝑑𝑣𝑣�𝑂𝑂(𝑝𝑝, 𝑞𝑞) = − � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  2𝑙𝑙0
𝜀𝜀𝑂𝑂
2 𝛿𝛿(𝑥𝑥,𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) = −2𝑙𝑙0

𝜀𝜀𝑂𝑂
2  . (E.10b) 

Note that the cost function gradient in the spatial frequency domain is constant. 
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The next step is to apply the adjoint of the forward Helmholtz transformation (3.6) to get the gradient 
components of the stream function and the velocity potential 𝑑𝑑𝜓𝜓�𝑂𝑂 and 𝑑𝑑𝜒̂𝜒𝑂𝑂 as 

 𝑑𝑑𝜓𝜓�𝑂𝑂(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋[−𝑞𝑞𝑞𝑞𝑢𝑢�𝑂𝑂(𝑝𝑝, 𝑞𝑞) + 𝑝𝑝𝑝𝑝𝑣𝑣�𝑂𝑂(𝑝𝑝, 𝑞𝑞)] = −4𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2 (𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞) , (E.11a) 

 𝑑𝑑𝜒̂𝜒𝑂𝑂(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋[𝑝𝑝𝑝𝑝𝑢𝑢�𝑂𝑂(𝑝𝑝, 𝑞𝑞) + 𝑞𝑞𝑞𝑞𝑣𝑣�𝑂𝑂(𝑝𝑝, 𝑞𝑞)] = −4𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2 (𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞) . (E.11b) 

To arrive at the gradient components of the normalized stream function and the normalized velocity potential, 
one must multiply with the adjoint of the background error covariance matrix in the spatial frequency domain, 
𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2 and 𝐵𝐵𝜒𝜒�𝜒𝜒�

1/2. These are real quantities given by (6.7). Setting 𝑅𝑅 = 𝑅𝑅𝜓𝜓 = 𝑅𝑅𝜒𝜒 and 𝜀𝜀𝐵𝐵 = 𝜀𝜀𝑙𝑙 = 𝜀𝜀𝑡𝑡 one readily 
finds 

 𝑑𝑑𝜓𝜓�𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −4𝜋𝜋𝜋𝜋�𝜋𝜋

2
(1 − 𝜈𝜈2) 𝜀𝜀𝐵𝐵

𝜀𝜀𝑂𝑂
2 𝑅𝑅2(𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝑒𝑒−

1
2𝜋𝜋

2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.12a) 

 𝑑𝑑𝜒̂𝜒𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −4𝜋𝜋𝜋𝜋�𝜋𝜋

2
𝜈𝜈2 𝜀𝜀𝐵𝐵

𝜀𝜀𝑂𝑂
2 𝑅𝑅2(𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝑒𝑒−

1
2𝜋𝜋

2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) . (E.12b) 

From observation gradient to analysis 

Now the results of chapter 7 can be applied to calculate the analysis. According to (E.8) and the discussion 
following it 

 𝝃𝝃 = 1
2
𝛻𝛻𝐽𝐽𝐵𝐵

𝑓𝑓𝑓𝑓𝑓𝑓 = −1
2
𝜀𝜀𝑂𝑂2(𝜀𝜀𝑂𝑂2 + 𝜀𝜀𝐵𝐵2)−1𝛻𝛻𝐽𝐽𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖  , (E.13) 

which translates into 

 𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −1
2

𝜀𝜀𝑂𝑂
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑑𝑑𝜓𝜓�𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) , (E.14a) 

 𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −1
2

𝜀𝜀𝑂𝑂
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑑𝑑𝜒̂𝜒𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) . (E.14b) 

From (E.14) and (E.12) one readily finds 

 𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋�𝜋𝜋
2

(1 − 𝜈𝜈2) 𝜀𝜀𝐵𝐵
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅2(𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝑒𝑒−
1
2𝜋𝜋

2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.15a) 

 𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋�𝜋𝜋
2
𝜈𝜈2 𝜀𝜀𝐵𝐵

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅2(𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝑒𝑒−
1
2𝜋𝜋

2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) . (E.15b) 

Now it is possible to transform (E.15a-b) back to the spatial domain. 

Unconditioning transformation 

Multiplying (E.15) with the background error covariance matrix in the spatial frequency domain, 𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2 and 

2/1
ˆˆχχB , yields 

 𝜓𝜓�(𝑝𝑝, 𝑞𝑞) = 𝑖𝑖𝜋𝜋2 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4(1 − 𝜈𝜈2)(𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.16a) 

 𝜒̂𝜒(𝑝𝑝, 𝑞𝑞) = 𝑖𝑖𝜋𝜋2 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4𝜈𝜈2(𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.16b) 
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again setting 𝑅𝑅 = 𝑅𝑅𝜓𝜓 = 𝑅𝑅𝜒𝜒 and 𝜀𝜀𝐵𝐵 = 𝜀𝜀𝑙𝑙 = 𝜀𝜀𝑡𝑡. 

Application of the forward Helmholtz transformation (3.6) results in 

 𝑡̂𝑡(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋3 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4[𝑝𝑝𝜈𝜈2(𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞) − 𝑞𝑞(1 − 𝜈𝜈2)(𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)] 𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.17a) 

 𝑙𝑙(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋3 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4[𝑞𝑞𝜈𝜈2(𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞) + 𝑝𝑝(1 − 𝜈𝜈2)(𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)] 𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) . (E.17b) 

This can be written as 

 𝑡̂𝑡(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋3 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4[𝜈𝜈2𝑡𝑡0𝑝𝑝2 + (2𝜈𝜈2 − 1)𝑙𝑙0𝑝𝑝𝑝𝑝 + (1 − 𝜈𝜈2)𝑡𝑡0𝑞𝑞2] 𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) , (E.18a) 

 𝑙𝑙(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋3 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 𝑅𝑅4[(1 − 𝜈𝜈2)𝑙𝑙0𝑝𝑝2 + (2𝜈𝜈2 − 1)𝑡𝑡0𝑝𝑝𝑞𝑞 + 𝜈𝜈2𝑙𝑙0𝑞𝑞2] 𝑒𝑒−𝜋𝜋2𝑅𝑅2(𝑝𝑝2+𝑞𝑞2) . (E.18b) 

Inverse Fourier transformation (A.2) finally yields 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 2𝜋𝜋3𝜀𝜀𝐵𝐵
2𝑅𝑅4

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝜈𝜈2𝑡𝑡0𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) + (2𝜈𝜈2 − 1)𝑙𝑙0𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦;𝑎𝑎) + (1 − 𝜈𝜈2)𝑡𝑡0𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎)� , (E.19a) 

 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 2𝜋𝜋3𝜀𝜀𝐵𝐵
2𝑅𝑅4

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �(1 − 𝜈𝜈2)𝑙𝑙0𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦; 𝑎𝑎) + (2𝜈𝜈2 − 1)𝑡𝑡0𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦;𝑎𝑎) + 𝜈𝜈2𝑙𝑙0𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎)� , (E.19b) 

where 𝑎𝑎 = 𝜋𝜋2𝑅𝑅2 and the integrals are defined as 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑝𝑝2𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (E.20a) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑝𝑝𝑝𝑝2𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (E.20b) 

 𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑞𝑞2𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (E.20c) 

These integrals are calculated in Appendix G. With 𝑎𝑎 = 𝜋𝜋2𝑅𝑅2 one obtains from (G.16) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = 1
𝜋𝜋3𝑅𝑅4

�− 𝑥𝑥2

𝑅𝑅2
+ 1

2
� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

𝑅𝑅2  , (E.21a) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = −1
𝜋𝜋3𝑅𝑅4

𝑥𝑥𝑥𝑥
𝑅𝑅2
𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

𝑅𝑅2  , (E.21b) 

 𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = 1
𝜋𝜋3𝑅𝑅4

�− 𝑦𝑦2

𝑅𝑅2
+ 1

2
� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

𝑅𝑅2  . (E.21c) 

This immediately yields the final result for the single observation analysis 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝜈𝜈2𝑡𝑡0 �1 − 2𝑥𝑥2

𝑅𝑅2
� − (4𝜈𝜈2 − 2)𝑙𝑙0

𝑥𝑥𝑥𝑥
𝑅𝑅2

+ (1 − 𝜈𝜈2)𝑡𝑡0 �1 − 2𝑦𝑦2

𝑅𝑅2
�� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

𝑅𝑅2  , (E.22a) 

 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �(1 − 𝜈𝜈2)𝑙𝑙0 �1 − 2𝑥𝑥2

𝑅𝑅2
� − (4𝜈𝜈2 − 2)𝑡𝑡0

𝑥𝑥𝑥𝑥
𝑅𝑅2

+ 𝜈𝜈2𝑙𝑙0 �1 − 2𝑦𝑦2

𝑅𝑅2
�� 𝑒𝑒−

𝑥𝑥2+𝑦𝑦2

𝑅𝑅2  . (E.22b) 

Remember that we started with the observation (𝑡𝑡0, 𝑙𝑙0) at the origin. However, if the observation is at some 
other location, the analytical expression for the single observation analysis is easily obtained from (E.22) by a 
shift in coordinates. 
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Special values 

For 𝑥𝑥 = 𝑦𝑦 = 0 equation (E.22) reduces to 

 𝑡𝑡(0,0) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝐵𝐵
2+𝜀𝜀𝑂𝑂

2 𝑡𝑡0 ,  𝑙𝑙(0,0) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝐵𝐵
2+𝜀𝜀𝑂𝑂

2 𝑙𝑙0 . (E.23) 

This is the weighted average of observation and the background. If 𝜀𝜀𝐵𝐵 → 0, i.e., if the background is free of 
errors, the analysis increment vanishes. Since the analysis is defined as the “true” wind field minus the 
background, this implies that the true wind field equals the background – which should be the case if the 
background is free of errors. 

If, on the other hand, 𝜀𝜀𝐵𝐵 → ∞, i.e., if the background is completely unreliable and contains no information, the 
analysis increment gets its maximum value and is determined by the observation – the only information source 
at hand. 

If 𝜀𝜀𝐵𝐵 = 𝜀𝜀𝑂𝑂, equation (E.23) yields 𝑡𝑡(0,0) = 1
2
𝑡𝑡0 and 𝑙𝑙(0,0) = 1

2
𝑙𝑙0. 

General single observation analysis 
In the general case, i.e., for non-Gaussian background error covariances, one can start from (E.11a-b) and 
multiply with the adjoint of the background error covariance matrix in the spatial frequency domain, 𝑩𝑩𝝍𝝍�𝝍𝝍�

𝟏𝟏/𝟐𝟐 and 
𝑩𝑩𝝌𝝌�𝝌𝝌�
𝟏𝟏/𝟐𝟐 to obtain 

 𝑑𝑑𝜓𝜓�𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −4𝜋𝜋𝜋𝜋

𝜀𝜀𝑂𝑂
2 (𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝐵𝐵𝜓𝜓�𝜓𝜓�

1/2 , (E.24a) 

 𝑑𝑑𝜒̂𝜒𝑂𝑂
(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = −4𝜋𝜋𝜋𝜋

𝜀𝜀𝑂𝑂
2 (𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝐵𝐵𝜒𝜒�𝜒𝜒�

1/2 , (E.24b) 

where again the fact has been used that the background error covariances are real, thus self-adjoint. Applying 
(E.14) to write (E.24) in terms of the analysis yields 

 𝜓𝜓�(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 (𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2 , (E.25a) 

 𝜒̂𝜒(𝑛𝑛)(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 (𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝐵𝐵𝜒𝜒�𝜒𝜒�
1/2 . (E.25b) 

Multiplying (E.25) with the background error covariance matrix in the spatial frequency domain, 𝐵𝐵𝜓𝜓�𝜓𝜓�
1/2 and 

𝐵𝐵𝜒𝜒�𝜒𝜒�
1/2, and writing 𝑓𝑓𝜓𝜓 = 𝐵𝐵𝜓𝜓�𝜓𝜓� , 𝑓𝑓𝜒𝜒 = 𝐵𝐵𝜒𝜒�𝜒𝜒�  yields 

 𝜓𝜓�(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 (𝑙𝑙0𝑝𝑝 − 𝑡𝑡0𝑞𝑞)𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞) , (E.26a) 

 𝜒̂𝜒(𝑝𝑝, 𝑞𝑞) = 2𝜋𝜋𝜋𝜋
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 (𝑡𝑡0𝑝𝑝 + 𝑙𝑙0𝑞𝑞)𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) . (E.26b) 

Applying the forward Helmholz transformation (3.6) gives 

 𝑡̂𝑡(𝑝𝑝, 𝑞𝑞) = 4𝜋𝜋2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �(𝑡𝑡0𝑝𝑝2 + 𝑙𝑙0𝑝𝑝𝑝𝑝)𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) − (𝑙𝑙0𝑝𝑝𝑝𝑝 − 𝑡𝑡0𝑞𝑞2)𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞)� , (E.27a) 

 𝑙𝑙(𝑝𝑝, 𝑞𝑞) = 4𝜋𝜋2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �(𝑡𝑡0𝑝𝑝𝑝𝑝 + 𝑙𝑙0𝑞𝑞2)𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) + (𝑙𝑙0𝑝𝑝2 − 𝑡𝑡0𝑝𝑝𝑝𝑝)𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞)� . (E.27b) 
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The analysis wind fields are obtained by applying the inverse Fourier transformation (A.2) to (E.27) 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 4𝜋𝜋2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞)�(𝑡𝑡0𝑝𝑝2 + 𝑙𝑙0𝑝𝑝𝑝𝑝)𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) − (𝑙𝑙0𝑝𝑝𝑝𝑝 − 𝑡𝑡0𝑞𝑞2)𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞)� , (E.28a) 

 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 4𝜋𝜋2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) �(𝑡𝑡0𝑝𝑝𝑝𝑝 + 𝑙𝑙0𝑞𝑞2)𝑓𝑓𝜒𝜒(𝑝𝑝, 𝑞𝑞) + (𝑙𝑙0𝑝𝑝2 − 𝑡𝑡0𝑝𝑝𝑝𝑝)𝑓𝑓𝜓𝜓(𝑝𝑝, 𝑞𝑞)� . (E.28b) 

The integrals in (E.28) can be evaluated by noting that 

 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑𝑒𝑒

−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑓𝑓(𝑝𝑝) = − 2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑓𝑓(𝑝𝑝) , (E.29) 

from which it follows that 

 ∫𝑑𝑑𝑑𝑑𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑝𝑝𝑓𝑓(𝑝𝑝) = 𝑖𝑖
2𝜋𝜋

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

 . (E.30) 

Applying (E.30) to (E.28) finally yields 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = −1
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑡𝑡0 �
𝜕𝜕2𝑓𝑓𝜒𝜒(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦2
� + 𝑙𝑙0 �

𝜕𝜕2𝑓𝑓𝜒𝜒(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�� , (E.31a) 

 𝑙𝑙(𝑥𝑥,𝑦𝑦) = −1
𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑙𝑙0 �
𝜕𝜕2𝑓𝑓𝜒𝜒(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥2
� + 𝑡𝑡0 �

𝜕𝜕2𝑓𝑓𝜒𝜒(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�� . (E.31b) 

Equation (E.31) shows that the single observation analysis is determined by the double derivatives of the 
background error covariances (which are defined in the spatial potential domain), rather than their values. For 
Gaussian error covariances the spatial extent of the single observation analysis is of the same order of 
magnitude as that of the background error correlations, but in general this needs not be the case. 

Finally, substituting (6.1) into (E.31) yields (E.22). Starting from (6.1a-b) with 𝑅𝑅𝜓𝜓 = 𝑅𝑅𝜒𝜒 = 𝑅𝑅, 𝑉𝑉𝑙𝑙 = 𝑉𝑉𝑡𝑡 = 𝜀𝜀𝐵𝐵2, 
and 𝐿𝐿𝜓𝜓2 = 𝐿𝐿𝜒𝜒2 = 1

2
𝑅𝑅2 one finds 

 𝑓𝑓𝜓𝜓(𝑟𝑟) = 1
2

(1 − 𝜈𝜈2)𝜀𝜀𝐵𝐵2𝑅𝑅2𝑒𝑒
−𝑟𝑟2

𝑅𝑅2  ,  𝑓𝑓𝜒𝜒(𝑟𝑟) = 1
2
𝜈𝜈2𝜀𝜀𝐵𝐵2𝑅𝑅2𝑒𝑒

−𝑟𝑟2

𝑅𝑅2  , (E.32) 

with derivatives 

 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑟𝑟)
𝜕𝜕𝑥𝑥2

= (1 − 𝜈𝜈2)𝜀𝜀𝐵𝐵2 �
2𝑥𝑥2

𝑅𝑅2
− 1� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2  ,  𝜕𝜕2𝑓𝑓𝜒𝜒(𝑟𝑟)
𝜕𝜕𝑥𝑥2

= 𝜈𝜈2𝜀𝜀𝐵𝐵2 �
2𝑥𝑥2

𝑅𝑅2
− 1� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2  , (E.33a) 

 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑟𝑟)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= (1 − 𝜈𝜈2)𝜀𝜀𝐵𝐵2
2𝑥𝑥𝑥𝑥
𝑅𝑅2

𝑒𝑒−
𝑟𝑟2

𝑅𝑅2  ,  𝜕𝜕2𝑓𝑓𝜒𝜒(𝑟𝑟)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝜈𝜈2𝜀𝜀𝐵𝐵2
2𝑥𝑥𝑥𝑥
𝑅𝑅2

𝑒𝑒−
𝑟𝑟2

𝑅𝑅2  , (E.33b) 

 𝜕𝜕2𝑓𝑓𝜓𝜓(𝑟𝑟)
𝜕𝜕𝑦𝑦2

= (1 − 𝜈𝜈2)𝜀𝜀𝐵𝐵2 �
2𝑦𝑦2

𝑅𝑅2
− 1� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2  ,  𝜕𝜕2𝑓𝑓𝜒𝜒(𝑟𝑟)
𝜕𝜕𝑦𝑦2

= 𝜈𝜈2𝜀𝜀𝐵𝐵2 �
2𝑦𝑦2

𝑅𝑅2
− 1� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2  . (E.33c) 

Substitution of (E.33) in (E.31a) yields 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = −𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑡𝑡0 �𝜈𝜈2 �
2𝑥𝑥2

𝑅𝑅2
− 1� + (1 − 𝜈𝜈2) �2𝑦𝑦

2

𝑅𝑅2
− 1�� + 𝑙𝑙0 �𝜈𝜈2

2𝑥𝑥𝑥𝑥
𝑅𝑅2

− (1 − 𝜈𝜈2) 2𝑥𝑥𝑥𝑥
𝑅𝑅2
�� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2 = 

    = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝜈𝜈2𝑡𝑡0 �1 − 2𝑥𝑥2

𝑅𝑅2
� − (4𝜈𝜈2 − 2)𝑙𝑙0

𝑥𝑥𝑥𝑥
𝑅𝑅2

+ (1 − 𝜈𝜈2)𝑡𝑡0 �1 − 2𝑦𝑦2

𝑅𝑅2
�� 𝑒𝑒−

𝑟𝑟2

𝑅𝑅2  , 
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which is identical to (E.22a). The equivalence between (E.31b) and (E.22b) can be shown in the same 
manner. 
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Appendix F   Single observation analysis for 
EBECs 
Empirical background error correlations 
It has been shown by Vogelzang and Stoffelen [2011] that empirical background error correlations (EBECs) 
can be derived from O-B covariances under reasonable assumptions. Their results read 

 𝜌𝜌𝜓𝜓𝜓𝜓(𝑟𝑟) = 1 + 𝑆𝑆(𝑟𝑟)−𝑅𝑅(𝑟𝑟)
2𝑎𝑎𝜓𝜓

 ,  𝜌𝜌𝜒𝜒𝜒𝜒(𝑟𝑟) = 1 + 𝑆𝑆(𝑟𝑟)+𝑅𝑅(𝑟𝑟)
2𝑎𝑎𝜒𝜒

 , (F.1) 

with 

 𝑅𝑅(𝑟𝑟) = ∫ 𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠(𝑠𝑠) ,  𝑆𝑆(𝑟𝑟) = ∫ 𝑑𝑑𝑑𝑑  𝐽𝐽(𝑠𝑠)
𝑠𝑠

 ,𝑟𝑟
0

𝑟𝑟
0  (F.2) 

and 

 𝐼𝐼(𝑟𝑟) = ∫ 𝑑𝑑𝑑𝑑  𝜌𝜌𝑡𝑡𝑡𝑡(𝑠𝑠)−𝜌𝜌𝑙𝑙𝑙𝑙(𝑠𝑠)
𝑠𝑠

∞
𝑟𝑟  ,  𝐽𝐽(𝑟𝑟) = ∫ 𝑑𝑑𝑑𝑑 𝑠𝑠(𝜌𝜌𝑡𝑡𝑡𝑡(𝑠𝑠) + 𝜌𝜌𝑙𝑙𝑙𝑙(𝑠𝑠))𝑟𝑟

0  , (F.3) 

where 𝜌𝜌𝑡𝑡𝑡𝑡 and 𝜌𝜌𝑙𝑙𝑙𝑙 are the O-B correlations for the cross-track and along-track wind components, 𝑡𝑡 and 𝑙𝑙, 
respectively. 

The parameters 𝑎𝑎𝜓𝜓 and 𝑎𝑎𝜒𝜒 are determined by the requirement that the EBECs approach zero when 𝑟𝑟 goes to 
infinity as 

 𝑎𝑎𝜓𝜓 = −1
2

(𝑆𝑆(∞) − 𝑅𝑅(∞)) ,  𝑎𝑎𝜒𝜒 = −1
2

(𝑆𝑆(∞) + 𝑅𝑅(∞)) . (F.4) 

The length scales 𝐿𝐿𝜓𝜓 and 𝐿𝐿𝜒𝜒 are  

 𝐿𝐿𝜓𝜓2 = − 2𝑎𝑎𝜓𝜓
1−𝐼𝐼(0)

 ,  𝐿𝐿𝜒𝜒2 = − 2𝑎𝑎𝜒𝜒
1+𝐼𝐼(0)

 . (F.5) 

Since 𝑎𝑎𝜓𝜓 = −𝐿𝐿𝜓𝜓2 (1 − 𝜈𝜈2) and 𝑎𝑎𝜒𝜒 = −𝐿𝐿𝜒𝜒2 𝜈𝜈2 it follows from (F.5) that the divergence to rotation ratio 𝜈𝜈2 is 
given by 

 𝜈𝜈2 = 1
2

(1 + 𝐼𝐼(0)) . (F.6) 

Note that in the same notation as above the Gaussian background error correlations have the form 

 𝜌𝜌𝜒𝜒𝜒𝜒
(𝐺𝐺)(𝑟𝑟) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑟𝑟2

𝑅𝑅𝜒𝜒2
�  ,  𝜌𝜌𝜓𝜓𝜓𝜓

(𝐺𝐺)(𝑟𝑟) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑟𝑟2

𝑅𝑅𝜓𝜓
2 � , (F.7) 

which agrees with the definitions in chapter 6. 

Derivatives to x and y 
The EBECs (F.1) are functions of the distance 𝑟𝑟 only. Now for any function 𝐹𝐹(𝑟𝑟) 

 𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

= 𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹′(𝑟𝑟) 𝑥𝑥
𝑟𝑟

= 𝑥𝑥 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

 , (F.8a) 
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 𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

= 𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹′(𝑟𝑟) 𝑦𝑦
𝑟𝑟

= 𝑦𝑦 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

 , (F.8b) 

where the prime denotes differentiation to 𝑟𝑟. From (F.8) 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝑥𝑥2

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑥𝑥 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� = 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
+ 𝑥𝑥 � 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐹𝐹′(𝑟𝑟)
𝑟𝑟
� 𝑥𝑥
𝑟𝑟

= 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

+ 𝑥𝑥2

𝑟𝑟
𝑟𝑟𝐹𝐹″(𝑟𝑟)−𝐹𝐹′(𝑟𝑟)

𝑟𝑟2
 , (F.9a) 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑥𝑥 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� = 𝑥𝑥 � 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐹𝐹′(𝑟𝑟)
𝑟𝑟
� 𝑦𝑦
𝑟𝑟

= 𝑥𝑥𝑥𝑥
𝑟𝑟
𝑟𝑟𝐹𝐹″(𝑟𝑟)−𝐹𝐹′(𝑟𝑟)

𝑟𝑟2
 , (F.9b) 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝑦𝑦2

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑦𝑦 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� = 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
+ 𝑦𝑦 � 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐹𝐹′(𝑟𝑟)
𝑟𝑟
� 𝑦𝑦
𝑟𝑟

= 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

+ 𝑦𝑦2

𝑟𝑟
𝑟𝑟𝐹𝐹″(𝑟𝑟)−𝐹𝐹′(𝑟𝑟)

𝑟𝑟2
 , (F.9c) 

Rearranging terms yields 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝑥𝑥2

= 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

+ 𝑥𝑥2

𝑟𝑟2
�𝐹𝐹″(𝑟𝑟) − 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� , (F.10a) 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝑥𝑥𝑥𝑥
𝑟𝑟2
�𝐹𝐹″(𝑟𝑟) − 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� , (F.10b) 

 𝜕𝜕2𝐹𝐹(𝑟𝑟)
𝜕𝜕𝑦𝑦2

= 𝐹𝐹′(𝑟𝑟)
𝑟𝑟

+ 𝑦𝑦2

𝑟𝑟2
�𝐹𝐹″(𝑟𝑟) − 𝐹𝐹′(𝑟𝑟)

𝑟𝑟
� . (F.10c) 

Derivatives of the covariances 
According to (6.5) the background error covariances read 

 𝑓𝑓𝜓𝜓(𝑟𝑟) = (1 − 𝜈𝜈2)𝜀𝜀𝐵𝐵2𝐿𝐿𝜓𝜓2 𝜌𝜌𝜓𝜓𝜓𝜓(𝑟𝑟) , (F.11a) 

 𝑓𝑓𝜒𝜒(𝑟𝑟) = 𝜈𝜈2𝜀𝜀𝐵𝐵2𝐿𝐿𝜒𝜒2 𝜌𝜌𝜒𝜒𝜒𝜒(𝑟𝑟) , (F.11b) 

with 𝜀𝜀𝐵𝐵2 = 𝑉𝑉𝑙𝑙 = 𝑉𝑉𝑡𝑡 and the correlations given by (F.1). The derivatives of the covariances are 

 𝜌𝜌𝜓𝜓𝜓𝜓′ (𝑟𝑟) = 𝑆𝑆 ′(𝑟𝑟)−𝑅𝑅′(𝑟𝑟)
2𝑎𝑎𝜓𝜓

= 1
2𝑎𝑎𝜓𝜓

�𝐽𝐽(𝑟𝑟)
𝑟𝑟
− 𝑟𝑟𝑟𝑟(𝑟𝑟)�  ,  (F.12a) 

 𝜌𝜌𝜒𝜒𝜒𝜒′ (𝑟𝑟) = 𝑆𝑆 ′(𝑟𝑟)+𝑅𝑅′(𝑟𝑟)
2𝑎𝑎𝜓𝜓

= 1
2𝑎𝑎𝜒𝜒

�𝐽𝐽(𝑟𝑟)
𝑟𝑟

+ 𝑟𝑟𝑟𝑟(𝑟𝑟)�  ,  (F.12b) 

and (note that 𝐼𝐼′(𝑟𝑟) is to be evaluated at the lower limit of (F.3) which introduces a minus sign) 

 𝜌𝜌𝜓𝜓𝜓𝜓″ (𝑟𝑟) = 1
2𝑎𝑎𝜓𝜓

�𝑟𝑟𝐽𝐽
′(𝑟𝑟)−𝐽𝐽(𝑟𝑟)
𝑟𝑟2

− 𝑟𝑟𝐼𝐼′(𝑟𝑟) − 𝐼𝐼(𝑟𝑟)�  = 

    = 1
2𝑎𝑎𝜓𝜓

�𝑟𝑟
2�𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)+𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)�−𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 𝑟𝑟 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)−𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)

𝑟𝑟
− 𝐼𝐼(𝑟𝑟)� = 

    = 1
2𝑎𝑎𝜓𝜓

�2𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)
𝑟𝑟2

− 𝐼𝐼(𝑟𝑟)�  ,  (F.13a) 

 𝜌𝜌𝜒𝜒𝜒𝜒″ (𝑟𝑟) = 1
2𝑎𝑎𝜒𝜒

�𝑟𝑟𝐽𝐽
′(𝑟𝑟)−𝐽𝐽(𝑟𝑟)
𝑟𝑟2

+ 𝑟𝑟𝐼𝐼′(𝑟𝑟) + 𝐼𝐼(𝑟𝑟)�  = 

    = 1
2𝑎𝑎𝜒𝜒

�𝑟𝑟
2�𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)+𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)�−𝐽𝐽(𝑟𝑟)

𝑟𝑟2
− 𝑟𝑟 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)−𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)

𝑟𝑟
+ 𝐼𝐼(𝑟𝑟)� = 

    = 1
2𝑎𝑎𝜒𝜒

�2𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)
𝑟𝑟2

+ 𝐼𝐼(𝑟𝑟)�  .  (F.13b) 

Now the corresponding derivatives of the covariances are equal to the derivatives of the correlations (F.12) 
and (F.13) multiplied by the appropriate factor defined in (F.11). 
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Analysis 
Substitution of (F.10) to (F.13) in (E.30) yields 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑡𝑡0
𝜈𝜈2𝐿𝐿𝜒𝜒2

2𝑎𝑎𝜒𝜒
�−𝐼𝐼(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 2 �𝐽𝐽(𝑟𝑟)

𝑟𝑟2
− 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)� 𝑥𝑥

2

𝑟𝑟2
� + 

        +𝑡𝑡0
�1−𝜈𝜈2�𝐿𝐿𝜓𝜓

2

2𝑎𝑎𝜓𝜓
�𝐼𝐼(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 2  �𝐽𝐽(𝑟𝑟)

𝑟𝑟2
− 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)� 𝑦𝑦

2

𝑟𝑟2
� + 

        + 𝑙𝑙0
𝜈𝜈2𝐿𝐿𝜒𝜒2

𝑎𝑎𝜒𝜒
�𝐽𝐽(𝑟𝑟)
𝑟𝑟2

− 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)� 𝑥𝑥𝑥𝑥
𝑟𝑟2

+ 𝑙𝑙0
(1−𝜈𝜈2)𝐿𝐿𝜓𝜓

2

𝑎𝑎𝜓𝜓
�− 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)� 𝑥𝑥𝑥𝑥

𝑟𝑟2
� , (F.14a) 

 𝑙𝑙(𝑥𝑥, 𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑙𝑙0
�1−𝜈𝜈2�𝐿𝐿𝜓𝜓

2

2𝑎𝑎𝜓𝜓
�𝐼𝐼(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 2 �𝐽𝐽(𝑟𝑟)

𝑟𝑟2
− 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)� 𝑥𝑥

2

𝑟𝑟2
� + 

        +𝑙𝑙0
𝜈𝜈2𝐿𝐿𝜒𝜒2

2𝑎𝑎𝜒𝜒
�−𝐼𝐼(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 2  �𝐽𝐽(𝑟𝑟)

𝑟𝑟2
− 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)� 𝑦𝑦

2

𝑟𝑟2
� + 

        +𝑡𝑡0
(1−𝜈𝜈2)𝐿𝐿𝜓𝜓

2

𝑎𝑎𝜓𝜓
�− 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
+ 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)� 𝑥𝑥𝑥𝑥

𝑟𝑟2
+ 𝑡𝑡0

𝜈𝜈2𝐿𝐿𝜒𝜒2

𝑎𝑎𝜒𝜒
�𝐽𝐽(𝑟𝑟)
𝑟𝑟2

− 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟)� 𝑥𝑥𝑥𝑥
𝑟𝑟2
� . (F.14b) 

From (F.4) to (F.6) it follows that 

  
(1−𝜈𝜈2)𝐿𝐿𝜓𝜓

2

𝑎𝑎𝜓𝜓
= −1 ,  𝜈𝜈2𝐿𝐿𝜒𝜒2

𝑎𝑎𝜒𝜒
= −1 , (F.15) 

so (F.14) simplifies to 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑡𝑡0 �
𝐽𝐽(𝑟𝑟)
𝑟𝑟2

+ �𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)
𝑟𝑟2
� 𝑥𝑥

2

𝑟𝑟2
+ �𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
� 𝑦𝑦

2

𝑟𝑟2
� + 

        + 𝑙𝑙0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) 𝑥𝑥𝑥𝑥
𝑟𝑟2
� , (F.16a) 

 𝑙𝑙(𝑥𝑥, 𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑙𝑙0 �
𝐽𝐽(𝑟𝑟)
𝑟𝑟2

+ �𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)
𝑟𝑟2
� 𝑥𝑥

2

𝑟𝑟2
+ �𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝐽𝐽(𝑟𝑟)

𝑟𝑟2
� 𝑦𝑦

2

𝑟𝑟2
� + 

        + 𝑡𝑡0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) 𝑥𝑥𝑥𝑥
𝑟𝑟2
� . (F.16b) 

Double application of ’l Hopital’s rule yields 

 lim
𝑟𝑟→0

𝐽𝐽(𝑟𝑟)
𝑟𝑟2

= lim
𝑟𝑟→0

𝐽𝐽′(𝑟𝑟)
2𝑟𝑟

= 1
2
𝐽𝐽″(0) = 1 , (F.17) 

since 𝐽𝐽″(𝑟𝑟) = 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) + 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) + 𝑟𝑟�𝜌𝜌𝑡𝑡𝑡𝑡′ (𝑟𝑟) + 𝜌𝜌𝑙𝑙𝑙𝑙′ (𝑟𝑟)� from (F.3). So (F16) is regular at the origin. Anyhow, the 
terms with 𝐽𝐽(𝑟𝑟) cancel, so (F.16) becomes 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑡𝑡0 �𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) 𝑥𝑥
2

𝑟𝑟2
+ 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) 𝑦𝑦

2

𝑟𝑟2
� + 𝑙𝑙0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) 𝑥𝑥𝑥𝑥

𝑟𝑟2
� , (F.18a) 

 𝑙𝑙(𝑥𝑥, 𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 �𝑙𝑙0 �𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) 𝑥𝑥
2

𝑟𝑟2
+ 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) 𝑦𝑦

2

𝑟𝑟2
� + 𝑡𝑡0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) 𝑥𝑥𝑥𝑥

𝑟𝑟2
� . (F.18b) 

Putting 𝑥𝑥 = 𝑟𝑟 cos 𝜑𝜑 and 𝑦𝑦 = 𝑟𝑟 sin𝜑𝜑 results in 

 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 [𝑡𝑡0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) cos2 𝜙𝜙 + 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) sin2 𝜙𝜙) + 𝑙𝑙0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) sin𝜙𝜙 cos𝜙𝜙] , (F.19a) 

 𝑙𝑙(𝑥𝑥, 𝑦𝑦) = 𝜀𝜀𝐵𝐵
2

𝜀𝜀𝑂𝑂
2+𝜀𝜀𝐵𝐵

2 [𝑙𝑙0(𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟) cos2 𝜙𝜙 + 𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) sin2 𝜙𝜙) + 𝑡𝑡0(𝜌𝜌𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝜌𝜌𝑡𝑡𝑡𝑡(𝑟𝑟)) sin𝜙𝜙 cos𝜙𝜙] . (F.19b) 
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Along the local x-axis (𝜑𝜑 = 0) or y-axis (𝜑𝜑 = 𝜋𝜋/2) these expressions take a particularly simple form, showing 
that the shape of the single observation analysis is proportional to the O-B correlations 𝜌𝜌𝑙𝑙𝑙𝑙 and 𝜌𝜌𝑡𝑡𝑡𝑡, which, of 
course, should be no surprise.  
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Appendix G   Fourier transforms involving a 
Gaussian function 
Forward Fourier transform 
Let the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) be defined in the spatial domain as a Gaussian function, 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝐹𝐹𝑠𝑠𝑒𝑒−𝑎𝑎𝑠𝑠𝑟𝑟
2  , (G.1) 

with 𝑟𝑟2 = 𝑥𝑥2 + 𝑦𝑦2 and 𝐹𝐹𝑠𝑠 and 𝑎𝑎𝑠𝑠 constants. 

Its Fourier transform in the frequency domain reads (see appendix A) 

 𝑓𝑓(𝑝𝑝, 𝑞𝑞) = ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑒𝑒2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑦𝑦)∞
−∞

∞
−∞ = 

   = 𝐹𝐹𝑠𝑠 ∫ 𝑑𝑑𝑑𝑑 𝑒𝑒−(𝑎𝑎𝑠𝑠𝑥𝑥2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)∞
−∞  ∫ 𝑑𝑑𝑑𝑑 𝑒𝑒−(𝑎𝑎𝑠𝑠𝑦𝑦2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)∞

−∞  . (G.2) 

The integrals over 𝑥𝑥 and 𝑦𝑦 can be evaluated using the relation 

 ∫ 𝑑𝑑𝑑𝑑 𝑒𝑒−(𝐴𝐴𝑧𝑧2+𝐵𝐵𝐵𝐵) = �𝜋𝜋
𝐴𝐴

∞
−∞ 𝑒𝑒−

𝐵𝐵2

4𝐴𝐴 . (G.3) 

Some simple algebra yields 

 𝑓𝑓(𝑝𝑝, 𝑞𝑞) = 𝐹𝐹𝑠𝑠
𝜋𝜋
𝑎𝑎𝑠𝑠
𝑒𝑒−

𝜋𝜋2

𝑎𝑎𝑠𝑠
(𝑝𝑝2+𝑞𝑞2) . (G.4) 

Inverse Fourier transform 
When deriving an analytical expression for the single observation analysis in Appendix F, the following 
integrals are needed: 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑝𝑝2𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (G.5a) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑝𝑝𝑝𝑝 𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (G.5b) 

 𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑞𝑞2𝑒𝑒−𝑎𝑎(𝑝𝑝2+𝑞𝑞2)𝑒𝑒−2𝜋𝜋𝜋𝜋(𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞) , (G.5c) 

The integrands are separable in 𝑝𝑝 and 𝑞𝑞, so 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = 𝐾𝐾2(𝑥𝑥; 𝑎𝑎)𝐾𝐾0(𝑦𝑦; 𝑎𝑎) , (G.6a) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = 𝐾𝐾1(𝑥𝑥; 𝑎𝑎)𝐾𝐾1(𝑦𝑦; 𝑎𝑎) , (G.6b) 

 𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = 𝐾𝐾0(𝑥𝑥; 𝑎𝑎)𝐾𝐾2(𝑦𝑦; 𝑎𝑎) , (G.6c) 

where 

 𝐾𝐾0(𝑥𝑥; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  , (G.7a) 

 𝐾𝐾1(𝑥𝑥; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑝𝑝 𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 , (G.7b) 

 𝐾𝐾2(𝑥𝑥; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑝𝑝2𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  . (G.7c) 
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The integral K0 

Write (G.7a) as 

 𝐾𝐾0(𝑥𝑥; 𝑎𝑎) = ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑒𝑒−𝑎𝑎𝑝𝑝2(𝑐𝑐𝑐𝑐𝑐𝑐( 2𝜋𝜋𝜋𝜋𝜋𝜋) − 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠( 2𝜋𝜋𝜋𝜋𝜋𝜋)) . (G.8) 

The second term yields zero, since the sine is odd while the Gaussian is even. The first term can be evaluated 
using equation (7.4.6) of Abramowitz and Stegun [1970] and yields 

 𝐾𝐾0(𝑥𝑥; 𝑎𝑎) = �𝜋𝜋
𝑎𝑎
𝑒𝑒−

𝜋𝜋2𝑥𝑥2

𝑎𝑎  . (G.9) 

The integral K1 
The are several ways that integral 𝐾𝐾1 can be evaluated. One way is to split the complex exponential into a sine 
and a cosine, like in (G.8) and do partial integration. A simpler way is to observe that from (G.7a)  

 𝑑𝑑𝐾𝐾0(𝑥𝑥;𝑎𝑎)
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 = −2𝜋𝜋𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑝𝑝𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 = −2𝜋𝜋𝜋𝜋𝐾𝐾1(𝑥𝑥; 𝑎𝑎) , (G.10) 

so that 

 𝐾𝐾1(𝑥𝑥;𝑎𝑎) = −1
2𝜋𝜋𝜋𝜋

𝑑𝑑𝐾𝐾0(𝑥𝑥;𝑎𝑎)
𝑑𝑑𝑑𝑑

 . (G.11) 

Substitution of (G.9) in the right-hand side of (G.11) gives 

 𝐾𝐾1(𝑥𝑥; 𝑎𝑎) = −𝑖𝑖 �𝜋𝜋
𝑎𝑎
�
3/2

𝑥𝑥𝑒𝑒−
𝜋𝜋2𝑥𝑥2

𝑎𝑎   . (G.12) 

The integral K2 
Double differentiation of (G.7a) yields 

 𝑑𝑑2𝐾𝐾0(𝑥𝑥;𝑎𝑎)
𝑑𝑑𝑥𝑥2

= 𝑑𝑑2

𝑑𝑑𝑥𝑥2 ∫ 𝑑𝑑𝑑𝑑∞
−∞  𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 = (−2𝜋𝜋𝜋𝜋)2  ∫ 𝑑𝑑𝑑𝑑∞

−∞  𝑝𝑝2𝑒𝑒−𝑎𝑎𝑝𝑝2−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 = −4𝜋𝜋2𝐾𝐾2(𝑥𝑥; 𝑎𝑎) , (G.13) 

so that 

 𝐾𝐾2(𝑥𝑥; 𝑎𝑎) = −1
4𝜋𝜋2

𝑑𝑑2𝐾𝐾0(𝑥𝑥;𝑎𝑎)
𝑑𝑑𝑥𝑥2

 . (G.14) 

With (G.9) this yields 

 𝐾𝐾2(𝑥𝑥; 𝑎𝑎) = 𝑒𝑒−
𝜋𝜋2𝑥𝑥2

𝑎𝑎 �− �𝜋𝜋
𝑎𝑎
�
5/2

𝑥𝑥2 + 1
2
� 𝜋𝜋
𝑎𝑎3
�
1/2
� . (G.15) 

The integrals Ipp, Ipq, and Iqq 
Substitution of (G.9), (G.12) and (G.15) in (G.6) yields 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = �− �𝜋𝜋
𝑎𝑎
�
3
𝑥𝑥2 + 1

2
𝜋𝜋
𝑎𝑎2
� 𝑒𝑒−

𝜋𝜋2(𝑥𝑥2+𝑦𝑦2)
𝑎𝑎  , (G.16a) 

 𝐼𝐼𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = −�𝜋𝜋
𝑎𝑎
�
3
𝑥𝑥𝑥𝑥𝑒𝑒−

𝜋𝜋2(𝑥𝑥2+𝑦𝑦2)
𝑎𝑎  , (G.16b) 
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 𝐼𝐼𝑞𝑞𝑞𝑞(𝑥𝑥,𝑦𝑦; 𝑎𝑎) = �− �𝜋𝜋
𝑎𝑎
�
3
𝑦𝑦2 + 1

2
𝜋𝜋
𝑎𝑎2
� 𝑒𝑒−

𝜋𝜋2(𝑥𝑥2+𝑦𝑦2)
𝑎𝑎  . (G.16c) 
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Appendix H Minimization step size 
The minimization is performed by routine LBFGS [Liu and Nocedal, 1989]. The algorithm adapts its step size, 
but the size of the first step must be given. The minimization starts at the point 𝜉𝜉 = 0. At this point the cost 
function value 𝑓𝑓(0) and its gradient 𝑔𝑔(0) are known. 

Suppose now that the cost function is a parabola in the plane defined by the gradient direction and the 
minimum. The cost function then reads 

 𝑓𝑓(𝜉𝜉) = 𝑎𝑎𝜉𝜉2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 , (H.1) 

with gradient 

 𝑔𝑔(𝜉𝜉) = 𝑑𝑑𝑑𝑑(𝜉𝜉)
𝑑𝑑𝑑𝑑

= 2𝑎𝑎𝑎𝑎 + 𝑏𝑏 . (H.2) 

The minimum is located at 𝜉𝜉 = 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 where the gradient equals zero. Equation (H.2) immediately yields 

 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏
2𝑎𝑎

 (H.3) 

Substitution of (H.3) in (H.1) gives the value of the cost function at the minimum 

 𝑓𝑓(𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑐𝑐 − 𝑏𝑏2

4𝑎𝑎
 (H.4) 

The value of 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 from (H.3) is expected to give a good first guess for the initial step size. Since the 
minimization starts at 𝜉𝜉 = 0, (H.1) and (H.2) readily yield 

 𝑐𝑐 = 𝑓𝑓(0) ,  𝑏𝑏 = 𝑔𝑔(0) . (H.5) 

One extra relation is needed to fix the coefficients of the parabola. This needs some additional assumption. 
The Single Observation Analysis shows that  

 𝑓𝑓(𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚) = 1
2
𝑓𝑓(0) (H.6) 

In practical cases, the minimum value of the cost function turns out to be 25% to 90% of its initial value. 
Substitution of (H.4) and (H.5) into (H.6) gives 

 𝑎𝑎 = 𝑔𝑔2(0)
2𝑓𝑓(0)

 . (H.7) 

Substitution of (H.7) into Equation (H.3) gives the final result 

 𝛥𝛥𝛥𝛥 = |𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚| = 𝑓𝑓(0)
|𝑔𝑔(0)| (H.8) 

for the initial step size. 2DVAR obtains the best results when the step size in (H.8) is multiplied by a factor of 
30. 
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