Screening routines for aerosol- and trace-gas-affected infrared radiances

Reima Eresmaa, Julie Letertre-Danczak, Tony McNally
European Centre for Medium-range Weather Forecasts (ECMWF), United Kingdom

Aerosol and trace-gas screening milestones at ECMWF

Start rejecting aerosol-affected IASI data

Implement trace gas detection for the 1st time

Make aerosol rejections channel-specific

Start rejecting aerosol-affected AIRS and CrIS data

Include dependency on aerosol type

Three-step aerosol type recognition

1. Flag the infrared (IR) field-of-view as aerosol-affected if brightness temperature (BT) differences at 980—1232 cm⁻¹ and 1090.5—1234 cm⁻¹ fall below threshold values.

2. Flag the detected aerosol as volcanic ash if the BT difference across 1168—1232 cm⁻¹ falls below a threshold value.

3. Otherwise, flag the aerosol as Saharan dust if the BT differences at 833—1090.5 cm⁻¹ and 1090.5—1234 cm⁻¹ fall below thresholds.

Channel-specific Saharan dust rejections

We estimate Aerosol Optical Depth (AOD) using the BT difference at 1090.5—1234 cm⁻¹ as a proxy. On average, larger AOD means larger negative O

B departure: this dependence is strongest on low-peaking channels.

Let us assume that the dust radiative effect, \(\delta \), is directly proportional to AOD:

\[\delta = \alpha \text{ AOD} \]

Based on a global sample of Saharan-dust-affected data, we predict the regression slope \(\alpha \) using normalized height assignment \(H \) as a predictor:

\[\alpha = \beta + \gamma H \]

where \(\beta = 2.1K \) and \(\gamma = -3.9K \).

Combining the two equations, solving for \(H \), and setting the maximum allowed dust radiative effect \(\delta_{\text{max}} = -0.1K \), we obtain the rejection threshold:

\[H_r = \frac{1}{\gamma} \left\{ \frac{\delta_{\text{max}}}{\beta} + \frac{\delta}{\alpha} \right\} \]

Channels are rejected if their heights are assigned lower than \(H_r \).

The trace-gas detection scheme

In 2015, the ECMWF satellite data monitoring system alerted from excessive Observation minus Background (O-B) departures over tropical Indian Ocean region. The anomaly was attributed to Indonesian forest fires, very intense at the time, and it showed a spectral shape matching the absorption lines of Hydrogen Cyanide (HCN).

High levels of atmospheric HCN were observed again during the fire season of 2019.

The scheme compares observations and O-B departures in two distinct channel groups that consist of tracer and control channels, respectively. Tracer minus control differences falling below threshold values lead to rejection of affected channels.

Acknowledgements

We thank EUMETSAT NWP SAF CDOP-3 program for funding the work presented in this poster.