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Abstract

This report describes a simulation study to obtain an optimum cloud detection channels and the threshold
for Atmospheric Infrared Sounder onboard Aqua earth observation satellite with a sampled profile database
based on the European Centre for Medium-Range Weather Forecasts 40-year re-analysis. The RTTOV-7
code and IASI-1DVar code is used to simulate AIRS brightness temperatures for cloudy profiles and to
calculate the cloud cost as a measure of cloudiness based on a Bayesian cloud detection scheme. The result
shows combined channels with long IR window and short IR window can detect thin ice clouds efficiently.
It is also shown that additional use of microwave window channels of AMSU-A onboard Aqua improves
cloud detection for low-level water cloud.

1. Introduction
1.1 Theimportance of cloud detection for NWP

Cloud detection is essential to retrieve accurate aimospheric parameter such as temperature and water
vapour from satellite data for Numerical Weather Prediction without considering cloud parameter such as
cloud liquid water and cloud ice water in the retrieval s because cloud affects observed radiance at the top of
atmosphere through strong absorption, emission, and reflection particularly in infrared spectral region.

1.2 Contribution of AIRS datato cloud detection

The Atmospheric Infrared Sounder (AIRS) is an instrument onboard NASA’s Aqua earth observation
satellite launched on 4 May 2002. The AIRS has 2378 channels and measures air temperature, humidity,
clouds and surface temperature. MetOffice has ingested near rea-time AIRS brightness temperature (BT)
data at 281 selected channels distributed by the National Environmental Satellite, Data, and Information
Service (NESDIS) and plans to use the data for meteorological applications. The origina channel number
and the wave number for each selected channel islisted in Table 1. An advantage of AIRS data over existing
other instruments in view of cloud detection is availability of many window channels free from line
absorption of gas with its very high spectral resolution. Another advantage of AIRS over Infrared
Atmospheric Sounding Interferometer (IASl), an operational instrument on the Europe's Meteorological
Satellite Organisation (EUMETSAT) Polar Systems - Meteorological Operational Satellite (EPS-Metop)
series of satellites, the first launch of which is planned for 2005, is high signal/noise ratio measurement with
smaller noise than the IASI due to the different architecture between grating spectrometer and interferometer
as described section 2.2.

1.3 Purpose

Purpose of this report isto find out the optimum cloud detection channels for variational (Bayesian) cloud
detection scheme introduced by English et al. (1999) and to determine the threshold of the cloud cost as a
measure of cloudiness. To get reliable and practical results, we use a huge dataset of atmospheric profiles
including cloud liquid and ice water profiles. Methodology is described in section 2, data set used in this
study is described in section 3, and results are given in section 4. In this study the scheme is applied only to
single-FOV observation. It means that we do not treat spatial variation of the observation that is used
frequently to detect cloud because we are focussing on the advantage of high-spectral resolution radiometers.
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2. Methodology

Fig. 1 shows the general flow of this study consists of three steps. The first step is radiation simulation
with a fast radiative model for cloudy atmospheric profiles from the ECMWF sampled profile database
explained in detail in section 3. The second step is a cloud cost calculation with IASI-1Dvar code based on
the radiative model for a clear profile. The third step is to determine the threshold for cloud detection and
validation of cloud detection performance with “true” total cloud liquid and ice water.

2.1 Cloudy radiation simulation

The Radiative Transfer for Tiros Operational Vertical Sounder fast radiative transfer model (RTTOV-7:
Saunders et. al, 2002) is used to simulate the brightness temperature (BT) at each channel for cloudy
atmosphere profiles in the ECMWF sampled database. Radiative transfer calculation is carried out by using
temperature, water vapour and ozone volume mixing ratio profiles at 43 pressure levels and surface
properties such as surface temperature, surface water vapour, and skin temperature and surface emissivity as
input parameters.

The standard RTTOV model is not suitable for this simulation study because in this model clouds are
assumed to be at one level, have unit emissivity and a top at a fixed cloud top pressure with a fractiona
coverage for each input profile. Therefore, we used RTTOVCLD routine which takes a profile of
temperature, cloud cover, cloud liquid water and cloud ice water on user defined model pressure levels and
computes infrared and/or microwave cloudy radiances for multilevel and multiphase cloud fields. In the
RTTOVCLD code, cloud is assumed to be random-overlapped.

The simulation is carried out for 281 sampled AIRS channels, the Advanced Microwave Sounding Unit —
A (AMSU-A) 15 channels, and AMSU-B 5 channels. Radiation simulation for the two microwave
instruments is to investigate a combined use of microwave instrument data with AIRS data. RTTOV-7
coefficients for NOAA-16 AMSU-A are used instead of AMSU on Aqua and the coefficients for NOAA-16
AMSU-B are used instead of the Humidity Sounder for Brazil (HSB) on Aqua.

In this report, the satellite zenith angle isfixed at 0.0 deg (i.e. nadir view) assuming the channel selection
and threshold value are insensitive to satellite zenith angle. Surface emissivity of IR channelsis assumed as
0.98 for land, 0.99 for sea-ice, and ISEM (Sherlock, 1999) for sea. Surface emissivity of MW channelsis
assumed to be the nominal value of RTTOV-7 for land and searice and the FASTEM-1 (English and
Hawison, 1998) value for sea. At cloudy BT simulation step, observation noise is not considered.

To select some candidates for cloud detection channels, we examine not only cloudy BT itself but also
sengitivities to a water vapour increment and a surface temperature increment.

2.1.1 Limitation of RTTOV-7

Two mgjor limitations should be noted associated with cloud detection. The first limitation is that
RTTOV-7 does not take into consideration any reflected solar component. For the short wave infrared
spectrum lower than 4 microns the solar reflection term is not negligible in daytime. Cloud detection
performance will be much improved for a low reflectance surface where the contrast between surface and
cloud islarge and it will be degraded for a high reflectance surface. The second limitation is that RTTOV-7
does not consider scattering effects. For the short wave infrared spectrum region, the size of cloud water
particles has the same order as the wavelength and the emissivity of the cloud is less than unity, so the
scattering by cloud water particlesis not negligible.

2.2 Cloud cost calculation
The cloud cost J.. that isameasure of cloudiness is calculated from the difference between the observed
and background BT over the given channels as follows;

3o =(ay) {H (%) BH (%) + R} (ay) @

where Ay =y, -Yy(%), Y,is the observation and y(x,)is the estimated observation vector calculated
from the background profile X, by aforward model, H (%,) =0,y(X,) isthe matrix containing the partial
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derivatives of the smulated observations with respect to the elements of X, . B is the error covariance matrix

of a priori measurements X,, R=(E+F) is the total observation error covariance matrix consists of the

instrumental error covariance matrix E and the forward model error covariance that is given by the matrix F.

The cloud cost in this study is cadculated by IASI_1DVAR code version 2.3 (Collard, 2002). The
IASI_1DVAR code is a program developed at the Met Office as part of the Numerical Weather Prediction
Satelllite Application Facility (NWP SAF) to retrieve atmospheric properties such as temperature and
humidity by using 1DVar scheme. The code was originaly developed for the IASI instrument but it can be
used with many different sounding instruments such as AIRS and AMSU. By changing the channel
selection for cloud detection, cloud cost for any channel combination can be calculated. One of great
benefits of IASI_1DVAR code is capability to treat multi-sensor data such as AIRS and AMSU
simultaneousdly.

The input data of IASI_1DVAR code are background profiles at 43 pressure levels, observation BTs of
the instruments, the background error covariance matrix, and observation and forward model error
covariance matrices. Radiative transfer model for AIRS and AMSU in IASI_1DVAR is based on RTTOV7
except that it does not include the cloudy radiation simulation function.

Equivalence between RTTOV 7 code used for cloudy BT simulation and RTTOV7 codein IASI_1DVAR
code are verified using clear profiles. To process a large profile dataset, the code is modified so that the
background profiles are given one at a time, rather than all together. In addition, a kind of profile
modification as a pre-processing of IASI_1DVar isremoved from the code to avoid producing an unexpected
cloud cost because the modification is implemented to get better retrieval results. In this step, we add the
background perturbation and observation noise in arandom manner as described later.

2.2.1 Background data

Background data are given by the ECMWF sampled profile database with a background perturbations.
The background perturbations are consistent with the error covariances expressed in the background error
covariance matrix, B. Asdescribed in Collard and Healy (2002), thisis done by decomposing the B-matrix,

B=XAX" 1)

And then cal cul ating true-minus-background perturbation through
N
X =% =2 aJAX @
i=1

Where the N eigenvalues, are the diagonal values of , X are the associated eigenvectors (and columns of X),

and @ isfrom a set of normally distributed random numbers with unit variance and zero average. The
background error covariance matrix used is the same as that used in IASI_1DVAR code.

2.2.2 Observation data

The observation data is given by ssimulating BTs based on the ECMWF sampled profile database in the
prior step and then adding random noise that is consistent with the R matrix being assumed for AIRS,
AMSU-A, and AMSU-B.

2.2.3 Background error covariance matrix

The background error covariance is related to the expected error in a 6hr NWP forecast. A background
error covariance matrix calculated for Mid-Latitude Winter is applied to cloud cost calculation. The constant
matrix is given both for ocean and land and all latitudes and seasons.

2.2.4 Total observation error covariance matrix
The total observation error covariance matrix consists of the instrumental error covariance matrix and the
forward model error covariance. The instrumental error covariance matrix for AIRS Flight Model is
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provided by JPL. The forward model error is given by Collard (2002). Fig. 2 shows the square root of
diagonal elements of R-matrix for AIRS and IASI. Instrumental noise of AIRS is less than those of IASI
except for sounding channels sensitive to upper atmosphere at long wave spectral region. In particular, the
observation noise values for the short wave channels of AIRS are about half of those of IASI.

2.3 Validation and threshold determination

In this simulation study, we know “true” total cloud liquid water and total cloud ice water by calculating
directly from the ECMWF sampled profile database, therefore we can investigate the relationships between
cloud cost and total cloud liquid/ ice water. From these relationships, we can determine optimum channel
selection and threshold for cloud detection and can verify the performance of cloud detection.

3. Dataset
3.1 ECMWF sampled profile database

The ECMWF sampled profile database (Chevallier, 2001) is a key source of information for thiswork. It
consists of 13495 atmospheric profiles sampled, i.e. geographically, temporally, and weather conditions,
from the ECMWF 40-year re-analysis (ERA-40) data. The ECMWF sampled profile database also includes
cloud properties, i.e. cloud liquid water, and cloud ice water, cloud cover, a8 ECMWF 60 model levels. The
dataset characterises a regular distribution of physically consistent atmospheric temperature, water vapour
and ozone profiles. Since these profiles are equally sampled in temperature, humidity, and ozone, the dataset
is very useful, for example, in making a kind of regression coefficient for some retrievals and in this study.
Atmospheric properties such as temperature, water vapour mixing ratio, ozone-mixing ratio are given at 60
model levels. This data set is used as an input to calculate cloudy Brightness Temperatures (BTs) of AIRS,
AMSU-A, and AMSU-B by RTTOV-7 as described in section 2.1. To match the interface, temperature,
water vapour mixing ratio, ozone mixing ratio is interpolated onto 43 pressure level pre-determined in
RTTOV-7.

Fig. 3 shows accumulated probability of total cloud liquid water (TCLW) and total cloud ice water
(TCIW). Usualy, TCLW takes the range from 1.0 (g/m?) to 1000 (g/m?), and TCIW takes the range from
0.5 (g/m?) to 300 (g/m?).

4. Resultsand Discussion
4.1 Definition of cloud categories

At the beginning, we define the cloud categories in this work. Total cloud water content in ECMWF
sampled profile database ranges from near zero to very large values continuously. So to our convenience,
we define three cloud categories namely ‘clear’, ‘thin cloudy’, and ‘thick cloudy’. Each category is defined
by total cloud liquid water and total cloud ice water as shown in Fig.4. The threshold between clear and thin
cloudy is very smal because the infrared broadband emissivity is about 0.1 even for water cloud
(Stephens,1984). Emissivity of ice cloud at the threshold between clear and thin cloudy is less than 0.01
(Kinne and Liou, 1989). The number of samplesin each category is 8954 (66.3%) for ‘thick cloudy’, 3356
(24.9%) for ‘thin cloudy’, and 1185 (8.8%) for ‘clear’, respectively. The ‘clear’ category consists of 797
completely clear, i.e. TCLW=0 and TCIW=0, profiles and 388 profiles with very thin cloud. Because the
change in BT for these very thin cloud profiles is bias of 0.13K and standard deviation of 0.21K for ch.843,
which is the most sensitive channel to cloud, and these values are much smaller than total observation error,
these profiles can be regarded as clear profiles.

4.2 Strategy for channel selection

For cloud detection, the clouds to be considered are thin ice clouds and lower level clouds, the top
temperature of which are close to surface temperature. Sufficiently thick cloud or much colder cloud than
surface temperature are easy to detect by any simple algorithm. Channels to be selected should have, 1)
large BT sensitivity to cloud, 2) small BT sensitivity to variable gas (e.g. water vapour, ozone) absorption,
and 3) small BT sensitivity to surface properties (e.g. skin temperature).

4.2.1 Sensitivity to cloud water
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The first condition is that the channels have high sensitivity to cloud liquid and ice water. Fig. 5 shows
BT senstivities to cloud for AIRS, AMSU-A, and AMSU-B. The red coloured channels are used in the
cloud cost calculation described later. In general, BTs in cloudy areas are colder than those in clear areas at
infrared wavel engths because the cloud top temperature is lower than the surface temperature. Occasiondlly,
very low-level cloud such as stratus or fog seems warmer than the surface. In AIRS channels, three
significant bands sensitive to cloud exist around 10.5 microns (selected ch.120-130), 8.9 microns (selected
ch.155-160), and 3.8 microns (selected ch.260-280). These three window bands are suitable for cloud
detection. Other bands are affected by very strong CO,, Os, and H,O gas absorption. In these bands
radiation at the top of the atmosphere comes from the atmosphere above the clouds, therefore no information
about clouds are included in such channels.

For AMSU-A and AMSU-B to represent AMSU-A and HSB on Aqua, BT sensitivities to cloud are
shown in Figs. 5b) and ¢). Ch.1-3, and 15 of AMSU-A have large sensitivity to cloud but other channels are
less sensitive because of the strong oxygen absorption band located at 60GHz. In the microwave spectral
region, the cloudy BT over ocean is larger than the clear BT, i.e. a negative value of BT decrease, and the
cloudy BT over land is smaller than the clear BT, i.e. apositive value of BT decrease. This contrast between
ocean and land makes cloud detection with microwave observation very difficult over coast region. Since
AMSU-A ch.1 is affected by the water vapour absorption line centred at 22.235GHz, AMSU-A ch.2, 3, and
15 are expected to be the channels best suited for cloud detection. AMSU-B ch.2 (150GHz), the frequency
of which isthe same as HSB ch.1 has small sensitivity to cloud but the average and standard deviation is too
small to use for cloud detection. We should pay attention that this small sensitivity of AMSU-B partly
comes from that RTTOV-7 does not consider the scattering by cloud.

Unfortunately, AMSU-A channels are less sensitive to ice cloud so those microwave channels are not
good for ice cloud detection. Due to this disadvantage, the cloud cost with AMSU-A should be implemented
carefully. It also should be noted that the BTs of the AMSU-A window channels are affected by surface
emission over land and sea ice and ocean which also varies with surface wind speed. This means the
background error is larger for AMSU-A channels and cloud cost tends to have a smaller value and it might
be difficult to distinguish cloud signal from background perturbation.

4.2.2 Sensitivity to water vapour amount

The second condition is that the channels had to be insensitive to water vapour absorption because the
variability of water vapour amount is an error source for the radiative transfer calculation. Even for weak
water vapour channels, we have not much prior information on humidity, it is better to avoid water vapour
channels.

Fig. 6 shows the BT sensitivities to a water vapour increment of 5% without changing water vapour
profile. For ailmost all spectral regions, water vapour affects the observed BT. Large sensitivity can be seen
at the 6.3 micron water vapour absorption band (selected ch.180-210) and at wavelengths longer than 11
micron (selected ch.100-120). At lower troposphere channels, water vapour’s effect is large. However for
shorter wavelength channels the effect of water vapour is small. The three window channels picked up in
section 4.2.1 have rather smaller sensitivities. In particular, some channels in the 3.8 micron bands are
almost free from water vapour perturbation.

It should be noted that the neighbour channel of ch.271 (2611.84cm™) and ch.272 (2617.16cm'™) have
very different sensitivities to water vapour. The sensitivities of ch.270 (2608.66cm™) and ch.273
(2623.57cm™) are over ten times as those of ch.271 and ch.272. Since the half-power bandwidths of HIRS
ch.18 (2515.6cm™) and ch.19 (2663.4cm™) are 35cm™* and 100cm™, respectively (Kidwell, 1998), the HIRS
instruments can not distinguish this kind of large spectra variation. This means that observation with high
spectral resolution is essential for cloud detection and/or retrieval particularly in the short wave region.
Similar feature can also be seen in the long wave region around 10.5 micron and 8.9 micron bands we
considered.

4.2.3 Sengitivity to skin temperature

Fig. 7 shows the BT sensitivities to a skin temperature increment of 1K. Large sensitivity can be seen in
the window bands. Small variation of the sensitivity arises from differences in water vapour absorption. For
the 3.8 micron window channel free from water vapour, the sensitivity is near to unity for al profiles. Since
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channels sensitive to cloud are also sensitive to skin temperature, the third condition, i.e. small BT sensitivity
to skin temperature, can not be used as a measure for channel selection.

4.2.4 Channels selection

Fig. 8 shows the mean sensitivities to water vapour amount and cloud water for the AIRS 281channel set.
The 3.5-4.2 micron channels are almost free from water vapour absorption but the sensitivities to cloud are
lower than the 10-13 micron and 8-9 micron channels. The 3.8 micron (2610 cm™) channels located around
the minimum of the water vapour continuum (Kneizys et al.,1980) is a secondary candidate for cloud
detection. It is noted that 8.9 micron are also a candidate because these channels are less sensitive to water
vapour than the 10.5 micron channels though both channel s have almost same sensitivity to cloud.

From these results, we nominate five channel selection sets as shown Table 2. S914 and S2333 are single
channel setsin long IR window and short IR window respectively. DBL is combination of S914 and S2333
channels. MIX is a combination of seven channels selected from 10.5micron (ch.787, ch.843, and ch.914),
8.9micron (ch.1221 and ch.1237), and 3.8 micron (ch.2328 and ch.2333) bands. Ch.1221 and ch.1237 in 8.9
micron band have amost the same sensitivities to cloud and water vapour and ch.2328 and ch.2333 in 3.8
micron band have a so the same sensitivities to cloud and water vapour. MIX with AMSU is a simultaneous
use with seven IR channels and three MW channels (AMSU ch.2,3, and 15). These selected channel sets
have large sensitivities to cloud and small or medium sensitivity to water vapour.

4.2.5 Number of channelsto be applied

In IASI-1DVar, the cloud cost is normalised by dividing by the number of used channels. If these
channels are independent of each other, the cloud cost value is independent of number of channels used.
However, the BT difference of these channels generally have some correlation. Therefore, the more
channels we used, the lower the cloud cost that is calculated. So a key point is to find channels as much as
possible provide independent information. The comparison between DBL channels and MIX channels will
give insight on the efficiency or redundancy of selected cloud channels.

4.3 Cloud cost

For these selected channel sets, cloud costs are calculated by IASI_1DVAR code (Collard, 2002). This
code can treat reduced channel observation data and multi-instrumental observations. This function enables
us to perform this study saving computer memory and calculation time. Background data is produced by
adding background noise consistent to background error covariance, which is used in the cloud cost
calculation. Simulated observation data is also modified by adding observation error consistent to
observation error covariance given as a R-matrix.

4.3.1 Sensitivity of cloud cost to cloud liquid and ice water

Fig. 9 shows sensitivities of cloud cost to a) total cloud liquid water, and b) total cloud ice water for each
of the channel sets. The sensitivities are calculated near clear profile cases, namely TCLW less than 100
(g/m® and TCIW less than 4 (g/m?). One of significant features is that the single channel cloud cost (S914
and S2333) has large sensitivity to water cloud and less sensitivity to ice cloud. On the other hand, multiple
IR channel cost (DBL and MIX) have larger sensitivity to ice cloud and less sensitivity to water cloud. In
the case of adding AMSU-A channels (MIX + AMSU), the cloud cost has a little larger sensitivity to water
cloud than MIX channels. However MIX with AMSU-A channels have less sensitivity to ice cloud than
MIX channels. These results suggest that, 1) single IR channel can not detect low emissivity ice cloud well,
2) multiple IR channels can detect such ice cloud due to the difference of spectral sensitivity to ice cloud, 3)
AMSU-A channel has some sensitivity to water cloud and can detect a kind of water cloud.

4.3.2 Combination of short wave IR channels and long wave IR channels

To confirm the advantage of cloud cost calculation consisting of short wave IR channels and long wave
IR channels over single channel cloud cost, MIX cloud cost and S914 cloud cost for each profile is plotted
in Fig.10. The abscissa denotes single channel (S914) cloud cost and ordinate the difference between MIX
cloud cost and S914 cloud cost. Green dots mean ‘thick cloudy’ and liquid water dominant (TCIW<TCLW)
profiles, blue dots mean ‘thick cloudy’ and ice water dominant (TCIW>TCLW) profiles, and red dots means
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‘clear’ profiles. Small black dots mean ‘thin cloudy’ profiles. The dense green belt distributed towards the
bottom right in Fig. 10 @ corresponds to thick water cloud and scattered blue dots in the upper right is the
area corresponds to ice-dominated cloud. It means that ice abundant cloud has rather large MIX cloud cost
and water abundant cloud has rather small MIX cloud cost.

Fig. 10 b) is an enlarged part of Fig. 10 a) showing the small cloud cost area. The black vertical lineis
the threshold for the single channel (S914) cloud cost and the dloped line is the threshold for the MIX
channels cloud cost. How to determine the threshold values is described section 4.4. Cloud cost with MIX
channels can have large values even if single channel (S914) cloud cost is less than the threshold and these
large MIX cloud costs correspond to profiles with ice-dominated cloud which can not be detected by S914
cloud cost. This suggests that the sensitivities of each of these channels are different for background
perturbation and for cloud contamination. Also we can see that many ‘clear’ profiles have larger S914 cloud
cost than its threshold but MIX cloud cost can determine these ‘clear’ profiles as ‘clear’. It should be noted
that this large advantage can be obtained by combining of short wave infrared channels and long wave
infrared channels. Single channel cloud cost only with long wave IR channel or only with short wave IR
channel can not detect the ice abundant cloud definitely.

However, MIX cloud costs for some profiles with water abundant cloud is less than its threshold,
therefore, such cloud is overlooked by MIX cloud cost. Radiative properties of lower-level water cloud in
infrared region is similar to that of ground surface, so cloud cost with many channels which have similar
sengitivities to cloud and ground surface give ambiguous results.

4.3.3 Simultaneous use of IR channels and MW channels

In this part, we describe the simultaneous use of microwave channelsfor cloud detection. The microwave
is a promising spectral region to detect some cloud because most microwave channels are almost free from
water vapour absorption and are sensitive to water cloud as shown in Fig. 5. Though the sensitivity of cloud
in the microwave spectral region is smaller than that at infrared spectrum, BTs of microwave channels give
independent information about cloud because the surface emissivity is less than unity and cloud emissivity is
lower than that in the infrared region. Therefore, microwave channels can detect low-level cloud even if the
temperature of cloud surface and ground surface are almost the same.

MIX with AMSU channel cloud cost and S914 channel cloud cost is plotted for all profiles in Fig.11.
‘Thick cloudy’ and liquid water dominant profiles and ‘thick cloudy’ and ice water dominant profiles do not
distribute separately but liquid water dominant profiles have larger MIX with AMSU cloud cost. This
difference results from the microwave channels considered here having little sensitivity to ice cloud. In
small cloud cost cases, many ‘thick cloudy’ and liquid water dominant profiles are detected by MIX with
AMSU cloud cost as well as some ‘thick cloudy’ and ice water dominant profiles even when the M1X cloud
costs for the profiles are smaller than the threshold of MIX cloud cost. Some ‘thick cloudy’ and ice water
dominant profiles are overlooked by using MIX with AMSU cloud cost.

4.4 Threshold determination

Figs. 12 a)-e) are used to determine thresholds for the five channel sets to be considered. The abscissais
the cloud cost and ordinate shows probabilities of each cloud category defined at section 4.1. In these
figures, raw probabilities (thin lines) and accumulated probabilities (thick lines) are shown. Raw
probabilities are smoothed by cloud cost and normalised by its maximum value. Accumulated probability
for the ‘clear’ category denoted by athick red lineis plotted and it becomes unity at a cloud cost of zero. For
the ‘thin cloudy’ category denoted by athick green line and ‘thick cloudy’ category denoted by athick blue
line, the accumulated probabilities are plotted as they become zero at cloud cost of zero.

Raw probabilities of each category have a maximum at zero for single channel (S914 and S2333) cloud
cost. When many channels are used in a cloud cost the maximum of raw probability is at alarger cloud cost
for al cloud categories.

English et al. (1999) show that athreshold around five is proper for cloud detection. But their threshold is
determined for limited synoptic conditions. Cloud cost takes continuous values for globally and seasonally
equal-sampled profiles so we can not get the threshold to be able to divide cloud area and clear area
perfectly. Raw probabilities for the ‘clear’ category and raw probabilities for the ‘thin cloudy’ and/or ‘thick
cloudy’ categories overlap as shownin Fig. 12.
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In this study, we define the threshold for cloud detection so that the accumulated ‘ clear’ profiles detection
rate equals the accumulated ‘thick cloudy’ profiles detection rate at that threshold. The crossing point of the
red thick line and the blue thick line in Fig.12 corresponds to the cloud cost threshold for each channel set.

Table 3 summarises the determined thresholds. The thresholds are 1.36 for S914 cloud cost, 1.23 for
S2333 cloud cost, 1.31 for DBL cloud cost, 0.97 for MIX cloud cost, and 0.93 for MIX with AMSU cloud
cost. For channel sets with many channels, thresholds near unit are obtained.

Table 3 also shows the hit ratio for cloud detection by each channel set for each cloud category. These hit
ratio are 90.4% for S914 cloud cost, 88.3% for S2333 cloud cost, 92.6% for DBL cloud cost, 92.9% for MIX
cloud cost, and 95.1% for MIX with AMSU cloud cost. With these optimum thresholds, about 31% of thin
cloud can be detected by single channel cloud costs. The value rises to about 33% for DBL and MIX cloud
cost and reaches 38% for MIX with AMSU cloud costs. It isinteresting that the performance of S2333 cloud
cost is worse than that of S914 even though the sensitivity of BT at 3.8 micron to water vapour is much
smaller than that at 10.5 micron. It means that the sensitivity to cloud is essential for cloud detection with
single channel cloud cost.

Combined use of long wave infrared channels and short wave infrared channels gives remarkable
improvement to cloud detection. The proportion of overlooked ‘thick cloudy’ cases is decreased from 10%
for single channels to 7% for combined channels and more than 3% ‘thin cloudy’ can be detected by the
combined channels. We can also note that the difference of the hit ratio between DBL and MIX is very
small. Addition of AMSU also results in large improvement to cloud detection. The proportion of
overlooked ‘thick cloudy’ casesis decreased to 5% and more ‘clear’ profiles can be found.

When it is necessary to obtain purer clear cases, we can apply a smaller threshold. However, some clear
profiles with high cost value caused by background perturbations are rejected as cloudy profiles.

4.5 Geographical characteristics of cloud detection result

Fig. 13 shows geographical distribution of all profiles. Fig.13d) is the result for the S914 cost and
Fig.13b) isthe result for the MIX cost, respectively. Green dots and blue dots in Fig.13a) and Fig.13b) mean
profiles assigned correct categories, i.e. ‘cloudy’ and ‘clear’, respectively, by the cloud detection. Where the
threshold between clear and cloudy is given a TCLW of 10(g/m?) and TCIW of 1(g/m?). Purple and red
coloured dots are mis-assigned profiles. In particular, red dots mean undesirable cases, which have small
cost though it iscloudy. For S914 cost, mis-assigned profiles are seen over Siberia, Canada, and the edge of
the Antarctic continent. Fig.13c) shows the improvement and degradation of cloud detection performance.
Blue dots are profiles, which are correctly assigned by MIX cost but mis-assigned by S914 cost. Red dots
are vice versa. Cloud detection with MIX cost is improved over most land areas and the Southern Ocean.
On the other hand, the cloud detection with MI1X cost is degraded over ocean at mid- and low-latitudes. By
these two categories validation, the hit ratio of cloud detection is improved from 80.6% for S914 to 83.1%
for MIX. Cloudy but cloud cost less than the threshold ratio is reduced from 17.8% for S914 to 15.7% for
MIX.

Fig.14 shows the result for MIX with AMSU cost. Fig.14b) shows improvement and degradation of
cloud detection performance of MIX with AMSU cost against S914 cost and Fig.14c) is those of MIX with
AMSU cost against MIX cost. MIX with AMSU cloud detection improves its performance over ocean then
addition of AMSU channels partly compensates the disadvantage of MIX cloud cost to S914 cloud cost. On
the other hand, the effects of AMSU channels are generally neutral over land or little negative particularly
over high-latitude land such as Antarctica and Greenland. Total performance of MIX with AMSU cost is
better than MIX cloud cost because hit ratio of cloud detection is improved from 83.1% for MIX to 85.4%.
Cloudy but cloud cost less than the threshold ratio is reduced from 15.7% for MIX to 13.3% for MIX with
AMSU.

5. Conclusions and Summary
5.1 Optimum selection of cloud detection channels
A simulation study to obtain an optimum set of cloud detection channel selection and the threshold for

AIRS was performed with a sampled profile database based on the ECMWF 40-year re-analysis. The
RTTOV-7 code and IASI-1DVar code is used to simulate AIRS, AMSU-A, and AMSU-B brightness
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temperatures for cloudy profiles and to calculate the cloud cost as a measure of cloudiness based on a

Bayesian cloud detection scheme. Sensitivity of the brightness temperatures to cloud and water vapour are

calculated and five candidates for channel set for cloud detection are obtained. Thresholds for each channel

set is determined and cloud detection performanceis verified with the true total cloud liquid and ice water.
The conclusions of this study are,

- Cloud cost with single window channel tends to overlook ice cloud and lower-level warm cloud.

- The 3.8 micron window single channel shows worse performance than the 10.5 micron single channel.

- By using long wave infrared window channels (10.5 micron and 8.9 micron) and short wave infrared

window channels (3.8 micron) of AIRS simultaneously, clear profiles of 93%, thick cloudy profiles of 93%

and thin cloudy profiles of 33% can be detected. Combined use of long wave and short wave infrared

window channelsis essential to ice cloud detection.

- Very little improvement is obtained by using 7 AIRS channels cloud cost over 2 AIRS channels cloud cost.

- Simultaneous use with AMSU-A gives much better performance by detecting low-level water cloud.

Combined use of infrared and microwave channels is essential to low-level water cloud detection, therefore,

an additional use of AMSU-A onboard Aquawill improve cloud detection.

- |If more channels are included in the cloud costs, smaller cloud cost is calculated and the cloud detection

performance is degraded. To avoid this, a kind of virtual channels, which consist of linear combination of

real channels, isto be investigated.

5.2 Some remarks on limitation of the investigation with RTTOV_CLD and IASI_1DVar codes

The characteristics of water cloud at 3.8 micron are, 1) weaker absorption (smaller emissivity) than that at
10.5 micron, and 2) larger reflection than that at 10.5 micron. Larger reflection by cloud causes larger BT
differences between cloudy area and clear areas. However, RTTOV_CLD does not consider cloud
reflection, and so can not simulate such a kind of BT difference. If we include the cloud reflection effect
into RTTOV_CLD, we will be able to find out that some short infrared channels are sensitive to low-level
water cloud without microwave channels.

When scattering effect by ice cloud in microwave is considered in RTTOV_CLD, the sensitivities of HSB
channelstoice cloud and efficiency of these channels for cloud detection can be estimated.

In this study, a constant background error covariance matrix was applied. It is possible that use of
detailed covariance matrices categorised by surface type, latitude, and seasons would give better results.

5.3 Toward the use of AIRS near real-time data

Near rea-time AIRS data will be available in fall 2002 at Met Office. Some investigations with near real-
time AIRS data will be used to verify the result of this study. In addition, AIRS observed BT at short wave,
for lower water cloud particularly in daytime will tell us if these channels are more effective than we found
in this study.

Future subjects to be studied are, 1) to apply ECMWEF cloud detection scheme (Watts, 2002) to AIRS
simulation data produced in this study, 2) to apply Bayesian scheme and the ECMWF scheme to AIRS near
rea-time data, 3) to develop a scheme to detect channels uncontaminated by cloud, and 4) to test some
assimilation tests of AIRS clear and/or cloudy data.

As can be seen in Fig. 13 and Fig.14, the cloudy case is predominant in actual profiles, then cloud
clearing or extracting unaffected cloud channels is essential for assimilation of AIRS data. When we use
AIRS data and AMSU data simultaneously, it should be noted that accurate coincidence of Field of View
(FOV) of both instruments is required. We also pay attention to whether AMSU data is contaminated by
small idands, lakes, or coast linein aFOV.

Though a nominal surface emissivity value of RTTOV-7 for land and sea-ice are given in this study, a
simulation with a more redlistic surface emissivity in particular over land should be required to verify the
AIRS near real-time data.
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Figure captions

Fig.1 General flow of this study.

Fig.2 Square root of diagonal elements of R-matrix (unit: K) for AIRS (red line) and IASI (blueline).

Fig.3 Accumulated probability of total cloud liquid water (red solid line) and total cloud ice water (green
dotted line) for 13495 profilesin ECMWF 60L_SD data set.

Fig.4 Cloud categories definition in this study. Abscissa denotes total cloud liquid water and ordinate
denotes total cloud ice water.

Fig.5 Sensitivity of simulated BT to cloud for a) AIRS, b) AMSU-A, and ¢c) AMSU-B. Abscissais channel
number of each instrument. Average (diamond marks) and standard deviation (bars) for 13495 profiles are
shown. Red coloured channel is used for cloud cost calculation.

Fig.6 Sensitivity of simulated BT to water vapour increment of 5% for AIRS. Average and standard
deviation for 13495 profiles are shown.

Fig.7 Sensitivity of simulated BT to surface temperature increment of 1K for AIRS. Average and standard
deviation for 13495 profiles are shown.

Fig.8 Mean sensitivity of smulated BT to water vapour and cloud for AIRS selected channels for 13495
profiles. Ordinateis BT difference for water vapour increment of 5% and abscissais BT difference due to
cloud. The BT differenceis average of these for 13495 profilesin 60L_SD data set. The number assigned is
channel number of AIRS 2378ch.

Fig.9 Sensitivities of cloud cost to a) total cloud liquid water, and b) total cloud ice water, for each of the
channel set.

Fig.10 Multi-channel cloud cost against single-channel cloud cost. Abscissais S914 cloud cost and ordinate
denotes difference between MIX cloud cost and S914 cloud cost. Fig.10 a) is plots for wide cloud cost range
and Fig.10 b) isfor small cloud cost range.

Fig.11 MIX with AMSU cloud cost against MIX cloud cost. Abscissais S914 cloud cost and ordinate
denotes difference between MIX cloud cost and S914 cloud cost. Fig.10 a) is plots for wide cloud cost range
and Fig.10 b) isfor small cloud cost range.

Fig.12 Abscissa denotes cloud cost and ordinate denotes accumulated and raw probability of each cloud
categories (clear, thin cloudy, and thick cloudy). The raw probability is normalized by its maximum value.
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The vertical black lineis the determined threshold for cloud detection. Fig. 12 @) isfor S914, b) for S2333,
c¢) for DBL, d) for MIX, and €) for MIX with AMSU.

Fig.13 Geographica distribution of each category assigned correctly and misassigned profiles. Blue colour
shows clear, green colour cloudy, purple colour clear with large cloud cost, and red colour cloudy with small
cloud cost. Red colour can be seen continental region. @) isfor S914 and b) for MIX. c) isthe upgraded
profiles and degraded profile.

Fig.14 Geographica distribution of each category assigned correctly and misassigned profiles. Blue colour
shows clear, green colour cloudy, purple colour clear with large cloud cost, and red colour cloudy with small
cloud cost. Red colour can be seen continental region. @) isfor MIX with AMSU. b) and c) isthe upgraded
profiles and degraded profile MIX with AMSU channels against S914 and MIX with AMSU channels
against MIX channels, respectively.
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Table 2 Channel selection for each combinations

Channel set Sel ected channel s

S914 Al'RS ch. 914(965. 722cm’, 10. 35mi cron)
S2333 Al RS ch. 2333(2617. 160m 3. 82mi cron)
DBL Al RS ch. 914 and 2333

M X Al RS ch. 787(917.569cn", 10. 90mi cron),

843(938. 183cni’, 10. 66 n cron)
914, 1221(1115. 06cm 8. 96mi cron)
1237(1123 55cm’, 8. 90 ni cron),
2328 (2611. 84cm 3.83m cron), 2333
MX + AMSU M X and AMSU ch. 2( 31. 4GHz) 3(50. 3GHz),15(89. 0GHz)

Table 3 Cloud detection results
Channel set Threshold Ht ratio (%
Clear Thin cloudy Thick cloudy

S914 1.36 90.4 31.3 90. 4
S2333 1.23 88.3 30.9 88.3

DBL 1.31 92.6 33.7 92.6

M X 0.97 92.9 33.3 92.9

M X + ANMSU 0.93 95.1 37.8 95.1
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