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Abstract

The Atmospheric InfraRed Sounder (AIRS) on board AQUA will provide 2378 channels
for each field of view of the instrument. As it is neither feasible nor efficient to assimilate
all the channels in a numerical weather prediction system, a policy of channel selection has
to be designed in this context. This paper attempts to assess the quality of the selected
AIRS radiance channels that will be available to the scientific community in near real
time by NOAA/NESDIS (called thereafter NESDIS NRT). This assessment is done by
comparing this channel selection with a more ”"optimal” method as the one presented in
Rabier et al. (2002) and based on Rodgers (1996). It turns out that although the selected
channel sets are different and that the information content as measured by the Entropy
reduction (ER) and the Degreee of Freedom for Signal (DFS) is slightly weaker for the
NESDIS NRT set than for the optimal set, both channel selections give similar results in
terms of analysis error for temperature, humidity and ozone.

The robustness of the results of the comparison is then evaluated by varying a range
of input parameters to the channel selection scheme: the background error covariance
matrix (used as a metric in Rabier at al. 2002) and the atmospheric training dataset
on which the channel selection is based. The results are robust to the specification of
the background error covariances (as long as they represent reasonably well the NWP
short-range forecast errors). It is also found that the Rabier et al. channel selection based
on a polar air mass training dataset performs poorly when applied (in a 1D-Var context)
to tropical air masses. Overall, the ?manual” channel selection of NESDIS NRT provides
a good compromise between robustness and quality.



1 Introduction

By measuring radiation in many thousands of different channels, advanced infrared sounders
such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sound-
ing Interferometer (IASI) have the potential to provide atmospheric temperature and
composition information at a much higher vertical resolution and accuracy that can be
achieved with the current generation of operational sounding instruments. The successful
exploitation of these next generation of satellite instruments is one of the major challenges
for Numerical Weather Prediction (NWP) centres in the next decade.

However, it is neither feasible nor efficient to assimilate all of the channels (approximately
2400 in the case of AIRS and 8400 in the case of IASI) and a policy of data compres-
sion such as channel selection has to be designed in the context of Numerical Weather
Prediction (NWP). The challenge is to find a set of channels that is small enough to
be assimilated efficiently in a global NWP system (with operational time constraints)
but which is still large enough to capture important atmospheric variability. In an ideal
world, the channels selected should not be fixed but change with a variety of atmospheric
conditions. It is expected that they will change geographically (e. g. from polar to trop-
ical locations), but also dynamically with the presence of clouds and degree of baroclinic
instability.

Following the launch of the NASA AQUA satellite, a reduced set of AIRS radiance chan-
nels will be made available to the scientific community in Near Real Time (NRT) by
NOAA/NESDIS and ECMWF is planning to exploit this reduced set at day one. Cur-
rently, simulated AIRS data are already generated daily (from the NCEP model) for
scientific trial purposes. Each simulated AIRS Field Of View contained 228 channels at
the beginning of the SAF visit (281 channels are now available). It is expected that the
channels provided for the real AIRS data will only depart marginally from this reduced
set. On the other hand, several information content studies for advanced sounders aim
at identifying the "best” channels for NWP in order to minimise the reduction of pieces
of information from advanced infrared sounders. In particular, Rabier et al.(2002) have
tested several methods and found that the most suitable is a method following Rodgers
(1996) reducing the number of TAST channels (in clear sky conditions) in an optimal way
which preserves the information content of the instrument. The main goal of this study is
to apply Rabier et al. (2002) methodology to the AIRS instrument in order to assess the
quality of the NRT NESDIS channel selection versus a more optimal channel selection.

In section 2, the experimental framework of the study as well as the optimal channel
selection method are briefly described. The ”efficiency” of the NRT NESDIS channel
selection is then compared to the Rabier et al. selection in terms of information content
and linear IDVAR performance (section 3). The robustness of the results to the inputs
specified to the channel selection is then evaluated. The sensitivity of the results to the
specification of the background error covariance matrix is described in section 4. Section
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5 addresses the problem of representativeness of the training dataset required to apply
Rabier et al. channel selection. Conclusions and perspectives are finally discussed in
section 6.

2 Experimental framework

The general framework of this channel selection study is linear optimal estimation theory
in the context of Numerical Weather Prediction. One follows the framework presented
at length by Rabier et al. (2002) from which we summarize the main elements. The
atmospheric profile in temperature, humidity and ozone at a given location is represented
by a vector z and the satellite observations by a vector y. The observations are linked to
the atmospheric state by the radiative transfer equation :

y=H(x)+eco+er (1)

where the measurement and the forward model errors ¢o and ep are assumed to be
gaussian noises with error covariance matrices O and F. We will denote R = O + F
the resulting observation error covariance matrices. The background state vector z; has
an error covariance matrix denoted B. The radiative transfer equation is assumed to
be weakly non-linear, making the tangent linear assumption valid in the vicinity of the
background state :

H(x) = H(zs) + H(z — 2) (2)

where H is the tangent linear model of the radiative transfer model H.

The optimal analysed state z, is given by

Tq =y + K(y — yp) (3)

with K=AH'R™! and A = (B! + H'R!H)™!. K is the Kalman gain matrix and A
is the analysis error covariance matrix. K can be interpreted as the generalized inverse
of H, allowing one to reconstruct the atmospheric profile from the observations.

Rabier et al. (2002) introduce two addtitional concepts: the Entropy Reduction (ER =
—3 log, det(AB™1), Rodgers, 2000) and the Degrees of Freedom for Signal (DFS = Tr(I—
AB™!). Both concepts are very useful in that they quantify the gain in information
brought by the observations with respect to the background information.

In this study, the radiative transfer model for ATIRS (RTAIRS) described by Matricardi
et al. (2001) has been used for 7. This model uses a fixed 43 pressure level vertical
discretization (see Matricardi and Saunders, 1999). The B matrix has been interpolated
from the current operational 60-level ECMWF background error covariance matrix rep-
resenting short range forecast errors of the ECMWEF model. The covariance matrix R
has been derived from the latest estimation of the AIRS instrument noise (Hannon, pers.
comm.) displayed in Figure 1.



2.1 Channel selection

The iterative method for channel selection, as proposed by Rodgers (1996) and used in
Rabier et al. (2002), consists in performing successive analyses, each one using only one
channel at a time. The resulting analysis error covariance matrix is updated accordingly
and used at the next step. This ensures that all the information coming from previous
channels is taken into account for the selection of the new channel. The channel selection
in our case is based on maximizing the ER (and is therefore ”optimal” in that sense).

In this study, the background fields and the AIRS data have been simulated from a set of
representative atmospheric situations. This set is part of the ECMWEF atmospheric data
base (Chevallier, 1999 and Chevallier et al, 2000) and forms a set of 108 profiles of tem-
perature, humidity, ozone and surface pressure covering most of atmospheric variability.
All atmospheric scenes are assumed to be cloud-free, over sea and for nadir views. The
108 profiles are divided into 75 midlatitude (20N-70N,20S-70S), 14 tropical (20N-20S) and
19 polar (70N-90N, 70S-90S) profiles.

As a starting point, we have considered the fact that 228 channels were available in the
NESDIS NRT dataset produced on a regular basis on the NESDIS WEB server!. Since
surface temperature is excluded in the first place from the study (the reason being that
firstly it is difficult to specify realistic correlations between surface temperature and lowest
model level background errors and secondly that, even if these correlations were kwown |,
they could be difficult to incorporate in 4D-Var, as Ts is treated indepedently of upper-air
fields), the NESDIS NRT ”window” channels were removed from the comparison. Two
separate checks were performed for the mean sea mid-latitude profile, to define a ” window”
channel:

e a channel for which the surface-to-space transmittance is smaller than .6 is not a
window channel

e a channel for which the departure between the computed brightness temperature
and the model sea surface temperature is larger than 4K is not a window channel

Applying this check, the total number of AIRS channels was reduced from 2378 to 1576
channels, NESDIS NRT channel set being reduced from 228 to 186 channels. In order
to perform a fair comparison between the NESDIS NRT remaining channels and the
optimally selected ones, the optimal channel selection was therefore restricted to selecting
the first 186 channels which maximize the ER.

As pointed out by Rabier et al. (2002), this method if applied bluntly (one optimal
channel selection per atmospheric profile) can be very CPU time consuming and would

Thttp://orbit35i.nesdis.noaa.gov/crad/st/airs near_realtime/level1b/
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certainly be impossible to apply in an operational context. Therefore a constant channel
selection has been computed as an average selection based on the set of 108 different
optimal channel selections (one per atmospheric profile).

Different criteria can be used to compare the quality of the different channel selections.
One can for example investigate the information content of AB~! represented by its
eigenvalues that provide the number of independent pieces of information brought by the
observations. The Degrees of Freedom for Signal (DFS) is another quantity that gives a
global measure of the reduction of uncertainty brought by the analysis.

2.2 Linear 1D-Var

Besides the quality criteria described above, the efficiency of each channel selection has
been evaluated in terms of linear 1D-Var. The linear 1D-Var is briefly described in the
following.

The optimal analysed state z, is given by

To =Ty + K(y — 1) (4)

with K = AH'R™! and A = (B! + H'R'H)"!. K is the Kalman gain matrix
and A is the analysis error covariance matrix introduced above. K can be interpreted
as the generalized inverse of H, allowing to reconstruct the atmospheric profile from the
observations. The parameter space is the temperature, humidity and ozone profile defined
on the 43 RTAIRS pressure levels (Matricardi et al., 2001).

3 Comparison between NESDIS NRT and Rabier et
al. selection

As stated above, a constant channel selection has first been built as an average selection
based on the set of 108 individual channel selections. This average selection will be called
thereafter ”constant”. This selection is compared with the NESDIS NRT selection and
with the "optimal” channel selection (where individual channel selections are performed
for each individual profile). Worth mentioning is that only 31 channels are always selected
throughout the 108 channel selections (corresponding to very different atmospheric situa-
tions), whereas 1763 channels are never selected. The resulting constant channel selection
shares 65 channels with NESDIS NRT selection. Figure 2 displays the AIRS spectrum
corresponding to the mean atmospheric profile (averaged over the 108 profiles) with the
location of the NESDIS NRT selected channels (blue circles) and Rabier et al. (pink
stars) selected channels. As a first sight, the NESDIS NRT channel set spans more evenly
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the IR spectrum than the constant channel set which privileges specific small spectral
domains. 50% of NESDIS NRT channels are located in the 649-1150 cm™" (longwave and
ozone) band while 44% of the constant channels are located in the 1150-1650 cm ! (water
vapour) band. The 4.5 ym band is hardly covered by the constant channel selection,
whereas both NESDIS NRT and constant channels describe evenly the 4.2 ym CO2 band.
The ozone band (1050 cm™!) is also well captured by the two selections.

Jacobians of the channels exclusively selected by NESDIS NRT (left panels) and constant
(right panels) are represented in figure 3 for temperature (top panels) and humidity (bot-
tom panels). This figure indicates an overrepresentation of the upper stratosphere by the
constant selection. This can be explained by the large background error variances at these
levels. The corresponding channels are located in the CO, band at around 2350 cm™!.
Conversely, NESDIS NRT has a large number of channels peaking in the low troposphere
corresponding to the 700-750 cm ! band and to the 2400 cm ™! area. The constant chan-
nels located in the 1470-1500 cm ! band are sensitive to temperature between 400 hPa and
600 hPa. The bottom panels illustrate the dominating choice of the water vapour band
in the constant channel selection, partly driven by the vertical structure of the humidity
background error covariance matrix.

When looking at the ”efficiency” of the two channel selections, one can see that the ER
and DFS are slightly smaller for the NESDIS NRT selection (see Table 1). The number
of independent pieces of information brought by the 186 channels (as defined in the
section above) is also smaller (23.7 against 25.85) in the case of NESDIS NRT selection.
The standard deviations of the background error and of the 1D-Var analysis error have
then been studied for temperature, humidity and ozone parameter for all the 108 profiles
(Figure 4). The NESDIS NRT and the constant selection, as well as the optimal selection
provide similar temperature retrieval errors in the lower troposphere, while constant and
optimal selection give analysis errors in general smaller than 2 K in the upper-troposphere
and in the stratosphere (versus 2.5 K or more with the NESDIS NRT selection). Note that
temperature analysis errors are similar when the optimal or the constant sets are used,
whereas a small degradation is observed with the constant selection versus the optimal
selection for humidity. This indicates that the constant selection has difficulty to capture
the larger variability in the 108 humidity profiles. In addition, NESDIS NRT and constant
selections provide similar humidity and ozone analysis errors.

Comparisons with retrieval errors using all the AIRS channels and 1576 channels (cor-
responding to the remaining channels after exclusion of the ”window” channels) show
that these additional channels lead to a further reduction of temperature analysis error
of about 0.1 K in the troposphere and roughly of 0.2 K in the stratosphere. The improve-
ment in the humidity analysis is also very important in the lower troposphere when all
the channels are used in the assimilation. Likewise, the ozone retrieval error is largely
improved when the 2378 or the 1576 channels are used. Note that the 3 selections (NES-
DIS NRT contant and optimal) give almost identical results. The further gain in ER
is respectively 19.8 and 18.5 for the whole channel set and the 1576 channels (Table 1)



compared with the optimal selection (ER=50). Similarly a further gain of about 5 unit
in DF'S is observed when the 1576 or the 2378 channels are used in the analysis.

In conclusion, if a loss of information content is to be expected by using around one tenth
of the total number of AIRS channels, the NESDIS NRT selection seems reasonable for
NWP applications. Even though the information content is slightly smaller than for the
two other selections, the respective performance of NESDIS NRT and constant selections
is very comparable in terms of 1D-Var retrieval error (and this applies for temperature,
humidity and ozone).

In the two following sections, the robustness of the results to various inputs to the channel
selection is assessed.

4 Robustness of the selection to the specification of
the background error covariance matrix

The current background error covariance matrix used at ECMWF only provide a clima-
tology of short-range forecast errors. On the other hand, previous information content
studies, such as those of Prunet et al (1998) and Collard (1998), have suggested that
advanced sounders such as AIRS and IASI could resolve some of the small scale baro-
clinic structures that have been identified by the sensitivity studies (Rabier et al., 1996)
as being crucial to forecast error development.

One month of "key analysis errors” (as described in Klinker et al., 1998) has been com-
puted at a resolution of T159 (120 km): these ”errors” represent perturbations that, if
added to the operational analysis, reduce the 48 hour forecast error (defined as the global
difference between the 48h forecast and the verifying analysis). Up to now, humidity per-
turbations are not considered in the sensitivity computations, therefore only temperature
will be included in the study described below. These structures are generally of small
amplitude (meaning that a small atmospheric perturbation in this area can have a very
large impact on the forecast quality) and can be fairly sharp both in the horizontal and in
the vertical. One can clearly see that the associated covariance matrix (averaged over one
month) is sharper in vertical (Figure 5) and horizontal (Figure 6) than the operational
background covariance error. In addition, the error standard deviations are relatively large
in the troposphere and in the high stratosphere (although they remain altogether of much
smaller amplitude than the assumed averaged background errors used operationally).

It is therefore interesting to verify the robustness of the NESDIS NRT channel selection
to the specification of such an ”extreme” error covariance matrix in the 1D-Var algorithm.
Beforehand, Figure 7 shows the location of the channels chosen from the constant selection
computed with the operational background error covariance matrix (constant set) and
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the ”key analysis error” covariance matrix (constant-sensitivity set) for an analysis in
temperature only. Both selections share 131 channels. Main differences appear in the
668-683 cm ! band and in the vicinity of 2370 cm ! where channels are selected by
the constant method using the operational background error while the constant selection
computed from the key analysis error selects more channels in the water vapor band
(1200-1560 cm™'), channels obviously having some sensitivity to temperature as well and
located in layer where the temperature background error variance is large.

The standard deviation of the analysis performed with NESDIS NRT and the optimal
selection are shown in Figure 8. Even though the superiority of the dedicated channel
selection is observed, NESDIS NRT gives good results in that it manages to substantially
reduce the original "key analysis error” variance.

This only gives a flavour of the efficiency of the NESDIS NRT channel selection to cope
with sensitivity perturbations, since it is now well recognised that thes sensitive areas are
generally affected by clouds that will badly affect the performance of the AIRS instrument
altogether.

5 Impact of the air mass on the quality of the NES-
DIS NRT channel selection

In this section we investigate the robustness of the different channel selections to the
air mass under consideration. Two questions have been considered: 1) Is the NESDIS
NRT selection performing well regardless of the atmospheric type (polar, mid-latitude,
tropical)? 2) What happens to the constant selection if it is trained with a given air mass
and applied to a very different one?

5.1 Variation of the channel selection with respect to the air-
mass type

Let us remind that three air mass classes have been defined: the mid-latitude air mass
class is made of 75 profiles, the tropical one consists of 14 profiles and the last 19 profiles
represent the polar type. Figure 9 displays the constant channel selection with respect to
the air mass class (in that case the average has been performed on the profiles representing
each airmass type).

The global constant channel selection (averaged over the whole dataset) shares 185 chan-

nels in common with the mid-latitude constant selection, 170 channels with the tropical
constant selection and 148 channels with the polar selection. The polar and tropical

9



selections only share 132 channels. In particular, the polar selection does not pick any
channel in the longwave between 750 -770 cm™! in contrast to the two other selections.
As expected, the global constant selection is dominated by a mid-latitude signal and this
points out to a poor representation of polar and tropical air mass in the sampling dataset.

Figures 10, 11 and 12 display the standard deviations of background and analysis errors
for the mid-latitude, tropical and polar airmass types respectively.

e For temperature, the results are quite similar to those obtained with the global
constant selection and this for all air mass types.

e For humidity, the optimal channel selection gives systematically slightly better re-
sults than the constant and NESDIS NRT selections. Note that the analysis error
for the constant selection is outperformed by the NESDIS NRT selection for the po-
lar air mass type. This is due to missing sounding channels in the low troposphere
in this selection.

e For ozone, the 3 selections give similar results with the exception of the tropical set,

where the optimal and constant selections provide slightly smaller analysis errors
than NESDIS NRT.

Altogether, the NESDIS NRT seems to be fairly unsensitive to the air mass category,
pointing out to a careful "manual” choice of these channels.

5.2 Importance of the training dataset for the quality of the
channel selection

It has been shown above that the channel selection can vary depending on the air mass
type the selection is trained with. We want to illustrate here the impact of performing a
1D-Var analysis for certain atmospheric situations using a channel selection based on a
completely different atmospheric training dataset.

Figure 13 displays the 1D-Var performance of the NESDIS NRT, and polar constant
selection averaged over the 14 tropical profiles available in our dataset. One can clearly
see the degradation in humidity below 700 hPa of the polar constant selection, due to
a poor sampling of the tropospheric water vapour channels. One also note a loss of
around 1 unit in term of DFS and 6 % in term of entropy reduction (table 2). This tells
us that for an optimal selection to be robust and competitive with the day-1 NESDIS
NRT selection, an exhaustive training dataset is absolutely required, especially for highly
variable quantities such as humidity.
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6 Conclusions

The NESDIS NRT AIRS channel selection which will be provided to the operational
weather centres has been assessed through the comparison with an optimal iterative
channel selection following Rodgers (1996) and a constant selection deduced from this
iterative method. NESDIS NRT and constant channel sets are very different, only 65
channels are indeed identical between the two selections. However both constant sets lead
to similar results in terms of DFS and temperature, humidity and ozone 1D-Var analysis
errors. The humidity analysis is mostly affected by the use of a constant selection instead
of the optimal selection, pointing out to the difficulty of a constant selection to capture
the entire variability of the humidity field.

The impact of the background error covariance matrix has been assessed. A background
error covariance matrix representative of key analysis errors felt crucial for the quality
of the short range forecasts (and exhibiting smaller amplitude errors and sharper tem-
perature structure functions) has been used to validate the robustness of the NESDIS
NRT selection. It was shown that under those ”extreme” circumstances, NESDIS NRT
performs almost as well as a dedicated optimal channel selection.

The impact of the air mass on the channel selection has then been studied. The outcome
is that a poorly trained optimal channel selection can perform very badly especially for
humidity.

All the experiments show that despite the overall slightly smaller information content of
the NESDIS NRT versus optimally derived channel selections, this set seems very rea-
sonable for NWP applications and appears to be robust to various inputs to the method.
This gives some confidence about our day-1 strategy which consists in taking for granted
the NESDIS NRT selection.

Several limits of the method will be overcome in the near future. First the study will
be extended to the final NESDIS NRT channels (281 simulated channels are now daily
broadcasted). The impact of including surface temperature in the control variable and
adding surface channels in the selection will also be addressed. This could potentially
modify the selection of the lower tropospheric channels. Finally, the software has been
extended to a non linear 1D-Var which will be used to validate the findings described
above.
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7 Tables
Experiment | DFSin T | DFSin Q | DFSin O | DFS | ER EV
NESDIS 8.10 6.54 1.55 16.19 | 41.35 | 23.72
Optimal 9.29 .07 1.74 18.80 | 50.02 | 26.67
Constant 9.18 7.35 1.70 18.23 | 48.33 | 25.85
1576 channels 11.59 8.99 2.53 23.10 | 68.51 | 31.81
2378 channels 11.66 9.10 2.59 23.34 | 69.76 | 32.14

Table 1: Values of DFS (Degrees of Freedom of Signal), ER (Entropy Reduction) and the
mean of eigenvalues (EV) for the different experiments conducted in this study.

Experiment | DFSin T | DFSin Q | DFSin O | DFS | ER EV
Midlatitude
NESDIS 8.12 6.47 1.56 16.16 | 41.25 | 23.69
Optimal 9.34 7.62 1.75 18.70 | 49.53 | 26.61
Constant 9.23 7.27 1.72 18.23 | 48.33 | 25.90
Tropical
NESDIS 8.75 5.67 2.07 16.49 | 40.11 | 24.63
Optimal 9.85 6.38 2.51 18.74 | 46.88 | 26.50
Constant 9.77 6.14 2.50 18.41 | 46.11 | 26.00
Polar constant 9.62 5.98 1.95 17.55 | 43.41 | 26.21
Polar
NESDIS 7.51 7.45 1.11 16.08 | 42.70 | 23.21
Optimal 8.68 9.42 1.16 19.27 | 54.29 | 27.00
Constant 8.63 8.95 1.15 18.72 | 52.31 | 26.63

Table 2: Values of DFS (Degrees of Freedom of Signal), ER (Entropy Reduction) and
the mean of eigenvalues (EV) for the different experiments conducted in the study of the
impact with respect to the air mass.
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Figure 1: Typical spectrum of the AIRS observation-error values.
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stant set (right-hand panels)).
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Figure 4: Standard-deviation of errors averaged over 108 profiles, for various channel se-
lections to retrieve temperature (left-hand panel), humidity (right-hand panel) and ozone
(bottom panel). "Background’ corresponds to the standard deviation of background er-
rors. 'Nesdis’, ’optimal’ and ’constant’ are related to the standard deviation of analysis
errors obtained with the NESDIS Near Real Time set, optimal selection and constant
set. ’1576’ corresponds to the standard deviation obtained with an analysis using the
remaining channels after the exclusion of the 'window’ channels and 2378’ corresponds
to the standard deviation obtained with anldnalysis using all the ATRS channels.
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Figure 6: Horizontal correlation of the operational background error and of the key anal-
ysis error matrices.
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Figure 7: Typical spectrum of AIRS and location of the channels selected by the constant
set and the constant method computed with key analysis error matrix for an analysis in
temperature.
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Figure 9: Typical spectrum of AIRS and location of the channels selected by the constant
method with respect to the airmass classes (tropical constant, mid-latitude constant and
polar constant) and for the whole data set (constant).
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Figure 10: Standard-deviation of errors averaged over the mid-latitude airmass class, for
the various channel selections to retrieve temperature (left-hand panel), humidity (right-
hand panel) and ozone (bottom panel).

23



Standard deviation for T Standard deviation for Q
Tropical (14 profiles)

Tropical (14 profiles)

0 . . : o 0.0
L’
'/
1000 - Background i
&—>o Nesdis
#——% Optimal
200.0 =--4 constant |
1F N 9
\ 300.0 q
\
\
:/‘
400.0 1
< T
a a
= <
@ [ -
g 10 | 1 2 500.0
g g
= —-— Background =
a a 1
&—>o Nesdis 600.0
#— Optimal
F--€
constant 7000 - |
100 4
800.0 1
900.0 1
1000 - . . . . . 1000.0 . . b
0.0 0.5 1.0 15 20 25 3.0 35 4.0 0.0000 0.0005 0.0010 0.0015
temperature (K) Humidity (kg/kg)
Standard deviation for 0
Tropical (14 profiles)
0 ] T T
—-— Background
&—=o Nesdis
#——% Optimal
&--4 constant
<
a
=
E 3
>
@
<4
a

1000 L L
0.0e+00 2.0e-07 4.0e-07 6.0e-07
Ozone (kg/kg)

Figure 11: Standard-deviation of errors averaged over the tropical airmass class, for the
tropical constant channel selection to retrieve temperature (left-hand panel), humidity
(right-hand panel) and ozone (bottom panel).
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Figure 12: Standard-deviation of errors averaged over the polar airmass class, for the polar
constant channel selection to retrieve temperature (left-hand panel), humidity (right-hand
panel) and ozone (bottom panel).
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Figure 13: Standard-deviation of errors averaged over the 14 tropical profiles, for various
channel selections (NESDIS NRT set, tropical constant set and polar constant set) to
retrieve temperature (left-hand panel), humidity (right-hand panel) and ozone (bottom
panel).
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