

AWS DDB ICD Arctic Weather Satellite SYS

Action	Name	Function
Author:	Milan Battelino	System Engineer
Reviewed by:	Niklas Ahlgren	System engineer
Checked by:	Leonardo Ruo	PA
Authorised by:	Joakim Kugelberg	PM
Released by:	Ingrida Sriupsaite	DM

© 2024 The copyright in this document is vested in OHB Sweden AB. This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of OHB Sweden AB or in accordance with the terms of ESA Contract n°4000133894/21/NL/IA (the "Contract").

OHB Sweden AB P.O. Box 1269 SE-164 29 KISTA Sweden Tel: +46 8 121 40 100 www.ohb-sweden.se OHB Sweden certifies that this document has been approved and signed by the above persons via an electronic approval process supported by OHB Sweden's PLM System. Document Release is indicated by the Issue Date and State "Released" written on the front page by the PLM system.

AWS DDB ICD

DISTRIBUTION LIST

Name	No. of Copies	Company/Organisation
CADM		ESA
		Public

DOCUMENT CHANGE RECORD

Issue	Date	Section	Comments	Author
01.1	2022-02-17		Initial draft	Enrique Lamoureu x
01	2022-03-02		Issue for release	LHE
02.1	2022-06-03		New Revision	Milan Battelino
02.2	2022-06-03	5.2.3.1 6.1.2	Removed reference [RD4] Updated CCSDS Time Code Format fields in section 5.2.3.1 Specified endianness of CUC_TIME field in Science Packet	Milan Battelino
02.3	2022-06-03	6	All tables updated	Milan Battelino
02.4	2022-06-22	4.1.6	L-Band Data / symbol rate update to match TCM internal frequency dividers.	ELA
02.5	2022-11-23	Table 6-9	Interpretations added to manoeuvre flag, spacecraft mode & payload mode. SID specified	NAH
2.6	2023-01-24	Annex D	L-Band Link budget update	ELA
02	2023-01-28		Issue for release	LHE
03.1	2023-03-23	§5.2.3.1	Clarification on Time Preamble, Time epoch, and Time reference status	Vincent Garcia
03.2	2023-06-20	§5.2.2.1 §6.1.2	Removed TBC on APID numbers Updated Science packet format	Vincent Garcia
03	2023-06-27		Issue for release	LHE
04.1	2024-01-25	-	New revision	MBA
04.2	2024-01-25	§5.1 §5.2 §5.3	Editorial corrections. Clarification that trailer is not used in TM Transfer Frames over L-band.	MBA
04	2023-01-30		Issue for release	LHE

This document is proprietary to OHB Sweden. It shall not be communicated without written permission from the owner. Page 2 of 41

AWS DDB ICD

Iss	sue	Date	Section	Comments	Author
5	5.1	2024-03-13	§4.1 Annex E	Downlink Physical layer update Antenna Radiation pattern based on measured values	ELA
C	05	2024-03-21		Issue for release	LHE

AWS DDB ICD

TABLE OF CONTENTS

1. INTRODUCTION	7
1.1 Scope	7
2. DOCUMENTS	8
2.1 Applicable Documents	8
2.2 Reference Documents	8
2.3 Acronyms & Abbreviation List	8
2.4 Definitions	9
3. OVERVIEW OF THE AWS MISSION	11
3.1.1 AWS Mission description	
3.1.2 Space to ground communications	
4. L-BAND – PHYSICAL LAYER	
4.1 Downlink	
4.1.1 Frequencies	
4.1.2 Polarization	
4.1.2 Folanzation 4.1.3 Radiated power	
4.1.4 Telemetry channels formats	
4.1.5 Modulation	
4.1.6 Telemetry bit rates	
4.1.7 Coding	
5. TELEMETRY STRUCTURE	14
5.1 Introduction	14
5.2 Telemetry source packet	16
5.2.1 Source packet format	
5.2.2 Source Packet Header	16
5.2.3 Packet Data Field	17
5.3 Telemetry transfer frame	19
5.3.1 Transfer frame length	
5.3.2 Transfer frame primary header	
5.3.3 Transfer frame secondary header	
5.3.4 Transfer frame data field	
5.3.5 Channel encoding and pseudo-randomization	
5.4 Channel Access Data Unit	
6. S/C SCIENCE TELEMETRY DATA	23
6.1 Instrument data	23
6.1.1 Auxiliary data	

AWS DDB ICD

6.1.2 Science packets data	
6.2 NAVATT data	33
ANNEX A CONVENTIONS	35
A.1 Bit Numbering Conventions	35
A.2 Field Alignment Conventions	35
A.3 Data structure	35
ANNEX B VIRTUAL CHANNELS	
B.1 Downlink	36
ANNEX C CYCLIC REDUNDANCY CODE (CRC)	37
ANNEX D LINK BUDGETS	38
ANNEX E ANTENNA PATTERN	39
ANNEX F IDLE DATA DESCRIPTION	40
ANNEX G SPACECRAFT IDENTIFICATION (SCID)	41

AWS DDB ICD

LIST OF FIGURES

Figure 3-1 - AWS mission architecture	11
Figure 5-1 Telemetry structure example	
Figure 5-2 - AWS – Synchronization and Channel coding sublayer	
Figure 5-3: Telemetry source packet format	16
Figure 5-4: Telemetry Transfer Frame format example	20
Figure 5-5 CADU structure	22
Figure 6-1 Payload_status parameters	31
Figure 6-2 SPOT parameters	32

LIST OF TABLES

Table 2-1: Applicable Documents	8
Table 2-2: Reference Documents	8
Table 2-3: Acronyms & Abbreviation List	9
Table 2-4: Acronyms & Abbreviation List	10
Table 6-1 AWS frequency band plan	23
Table 6-2 Auxiliary data inputs 1(2)	
Table 6-3 Auxiliary data inputs 2(2)	
Table 6-4 AWS Science Data packet structure	26
Table 6-5 Static Instrument Housekeeping parameters (HK_STATIC)	27
Table 6-6 HK_STATIC Configuration File	27
Table 6-7 Dynamic Instrument Housekeeping parameters 1(2) (HK_DYNAMIC)	28
Table 6-8 Dynamic Instrument Housekeeping parameters 2(2) (HK DYNAMIC)	29
Table 6-9 NAVATT packet structure	34
Table 6-10 VCID allocation for TM	36
Table 6-11 AWS DDB link budget at 5 degrees elevation	38
Table 6-12 Co-polar (RHCP) realized gain over elevation (θ) for different azimuth (φ)	39
Table 6-13 - SCID	41

1. INTRODUCTION

1.1 SCOPE

This document specifies the Direct Data Broadcast (DDB) service from the Arctic Weather Satellite.

The document describes:

- The downlink part of the Telecommunication System: frequencies, channel formats, polarisation, modulation, bit rates, coding
- The link budget and relevant figures of merit
- The telemetry structure: Telemetry Source Packet, Telemetry Transfer Frame, Channel Access Data Unit.

The document contains a number of annexes specifying:

- Conventions for bit numbering
- Virtual Channels
- Cyclic Redundancy Code (CRC)
- Parameter types and structure
- Time protocols and correlation
- Idle Packet structure

2. DOCUMENTS

2.1 APPLICABLE DOCUMENTS

This document shall be read in conjunction with documents listed hereafter, which form part of this document to the extent specified herein. In case of a conflict between any provisions of this document and the provisions of the documents listed hereafter, the content of the contractually higher document shall be considered as superseding.

AD	Doc. No.	Rev	Date	Title
[AD1]	CCSDS 401.0-B		Dec 2007	Radio frequency and modulation
[AD2]	CCSDS 131.0-B-2	2	Aug 2007	TM Synchronization and Channel coding
[AD3]	CCSDS 132.0-B-1	3	Sep 2003	TM Space Data Link Protocol
[AD4]	ECSS-E-ST-50-01C	С	July 2008	Space data links – Telemetry synchronization and channel coding
[AD5]	ECSS-E-70-41C	С	April 2016	Ground Systems and Operations – Telemetry and Telecommand Packet Utilisation
[AD6]	CCSDS-301.0-B-3	3	Jan 2002	Time Code Formats
[AD7]	CCSDS-355.0-B1	B1		Space Data Link Security Protocol

Table 2-1: Applicable Documents

2.2 REFERENCE DOCUMENTS

RD	Doc. No.	Rev	Date	Title
[RD1]	AWS-OSE-TN-0718	4		Satellite Technical Budgets external
[RD2]	IEEE 754:1985		1991	Standard for Binary Floating-Point Arithmetic
[RD3]	MIL-STD-1750a		July 1980	Military Standard Sixteen-Bit Computer Instruction Set Architecture
[RD4]	AWS-OMN-ICD-0003	7.0		Instrument software ICD
[RD5]	AWS-OSE-ICD-0063	6		Space To Ground ICD

Table 2-2: Reference Documents

2.3 ACRONYMS & ABBREVIATION LIST

The list below contains the general acronyms and abbreviations for this project.

Acronyms and Abbreviations			
APID	Application Process Identifier		
ASM	Attached Synchronous Marker		
AWS	AWS Arctic Weather Satellite		

AWS DDB ICD

Acronyms and	Abbreviations
CADU	Channel Access Data Unit
CDB	Configuration Database
DDB	Direct Data Broadcast
EIRP	Equivalent Isotropic Radiated Power
EOL	End of Life
GST	Ground Station
G/T	Station Gain over noise Temperature Ratio
НКТМ	House-Keeping Telemetry
LTAN	Local Time of Ascending Node
LTDN	Local Time of Descending Node
MCS	Mission Control System
NAVATT	Navigation and Attitude packet
NWP	Numerical Weather Prediction
OBSW	Onboard Software
OBT	On-board Time
PDGS	Processing Data Ground System
RF	Radio Frequency
S/C	Spacecraft
SCDB	Spacecraft Characteristics DataBase
SCET	Spacecraft Elapsed Time
SMD	Stored Mission Data
SRDB	Spacecraft Reference DataBase
SSO	Sun Synchronous Orbit
ST	Star Tracker
тс	Telecommand
TLE	Two-line Element
тм	Telemetry
VCID	Virtual Channel Identifier

Table 2-3: Acronyms & Abbreviation List

2.4 DEFINITIONS

The list below contains the general definitions for this project.

Definitions

AWS DDB ICD

Table 2-4: Acronyms & Abbreviation List

3. OVERVIEW OF THE AWS MISSION

3.1.1 AWS Mission description

The AWS PFM system is a precursor to a planned operational constellation of polar weather satellites. The AWS system comprises of a space segment (single satellite) and a ground segment.

The AWS satellite is based on the Innosat platform, a small, 3-axis stabilised spacecraft. The single payload is a microwave radiometer sensing water and humidity content over a wide swath using a rotating scanning mechanism. The instrument is constantly ON during the operational phase of the mission.

The AWS ground segment consists of one L-band ground station for Stored Mission Data, an S-band ground station for command and control, a satellite control centre and a processing centre of payload data.

Direct Data Broadcast is continuously transmitted in L-band for any meteorological user to access. Stored Mission Data is stored on-board and downloaded to the ground station at every L-band ground station contact to meet the data timeliness requirement. The L-band ground station is located in Svalbard, which grants frequent satellite access.

The satellite operates in two frequencies, S-band for HKTM and L-band for real time sensing data as well as for the downlink of Stored Mission Data. The S-band HKTM will be used in non-nominal situations when time critical operations are to be performed, such as on-board software maintenance and failure investigations.

The AWS mission is based on continuous payload operation, which implies that no management of user's requests are needed. All Level 0 and Level 1B processing is data-driven from what is collected at the Ground Station.

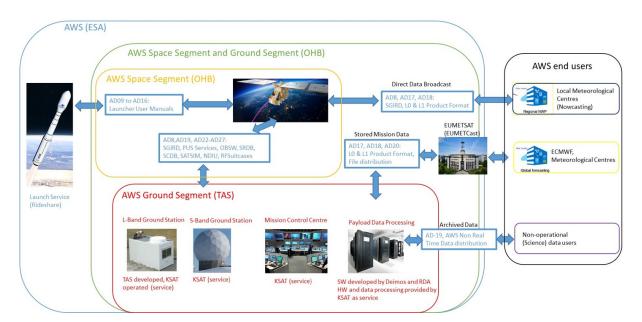
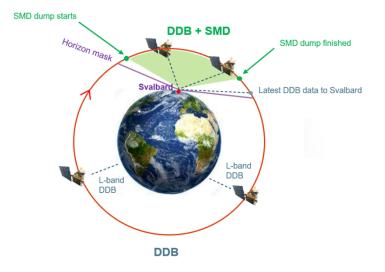


Figure 3-1 - AWS mission architecture


3.1.2 Space to ground communications

Each AWS satellite distributes continuously S/C science data stream (Instrument science packets + NAVATT) in L-band to support the regional Direct Data Broadcast (DDB) service.

Each AWS satellite collects and stores radiometric data over full orbits in a dedicated on-board mass memory partition. The Stored Mission Data (SMD) collected over each orbit is autonomously downloaded at every contact with the L-band Svalbard Ground station in the following pre-defined sequence:

- S/C events (platform and instruments), forwarded to MCS
- S/C Science stored data, forwarded to the PDGS
- S/C HK-TM stored data, forwarded to MCS

Each of these streams is then directly forwarded to MCS or PDGS based on VCID filtering.

4. L-BAND – PHYSICAL LAYER

The spacecraft telecommunication subsystem includes an L-band transmitter for the downlink of science data primarily.

The satellite telecommunication subsystem will be allocated with its dedicated frequency in the L-Band frequency range.

4.1 DOWNLINK

4.1.1 Frequencies

The downlink TM frequency band is 1.707GHz with a bandwidth of 3.4MHz [RD5].

4.1.2 Polarization

Right-hand circularization polarization (RHCP) is baselined in L-band.

4.1.3 Radiated power

The AWS satellite Equivalent Isotropically Radiated Power (EIRP) is defined in Annex D.

4.1.4 Telemetry channels formats

The telemetry format conforms to [AD2] and [AD3].

4.1.5 Modulation

For the downlink data, the downlink modulation scheme is QPSK.

4.1.6 Telemetry bit rates

The spacecraft telemetry data rate on the L-band link during science phase is:

- Total signal encoded rate: 3570kbps
- Symbol rate: 1785 kS/s

Total encoded rate includes packet headers, as well as CCSDS frame protocol headers, Reed Solomon overhead and convolutional encoding overhead. See 5.3.5 for further details.

4.1.7 Coding

The coding scheme for the telemetry is NRZ-L, following [AD4] & [AD2].

5. TELEMETRY STRUCTURE

5.1 INTRODUCTION

The protocol requirements for TM Source Packet and TM Transfer Frame are specified in this section.

TM Source Packet

The Source Packet is a data structure generated by an on-board Application Process. Aside from a packet header that identifies the source and characteristics of the packet, its internal data contents are completely under the control of the Application Process.

The requirements are specified in section 5.2.

Transfer Frame

The transfer frame is a data structure that provides an envelope for transmitting packetized data over a noisy space-to-ground channel.

The requirements are specified in section 5.3.

Channel Access Data Unit

The Channel Access Data Unit (CADU) is the data structure that comes out of the encoder and goes into the transmitter.

The requirements are specified in section 5.4

AWS DDB ICD

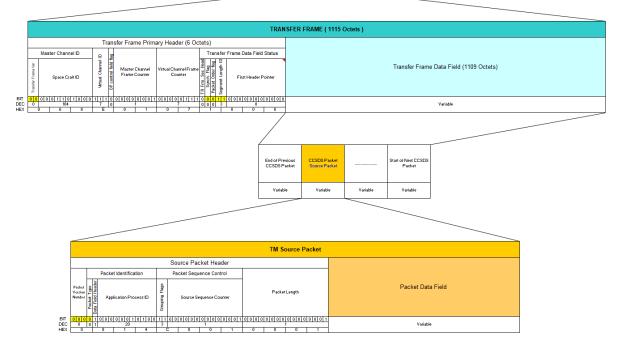


Figure 5-1 Telemetry structure example

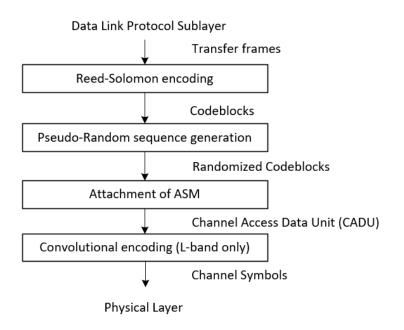


Figure 5-2 - AWS – Synchronization and Channel coding sublayer

5.2 TELEMETRY SOURCE PACKET

5.2.1 Source packet format

All Telemetry Source Packets must conform to the structure shown below.

SOURCE PACKET HEADER (48 bits)								PACKET DATA FIELD (VARIABLE)		
PACKET ID			PACKET SEQUENCE CONTROL		PACKET LENGTH	DATA FIELD HEADER (see below)	SOURCE DATA	PACKET ERROR CONTROL		
Version Number	Туре	Data Field Header Flag	Application Process ID	Grouping Flags	Source Sequence Count					
3	1	1	11	2	14					
	16			1	6	16	Defined by CUC format	Variable	16	

Data Field Header (64-120 Bits)								
TM Source Packet PUS Time			Service	Message	Destination	CCSDS Time Code Format		
Version Number (=2)	Reference Status	Туре	Subtype	Type Counter (=0)	ID	Preamble	CUC Time Seconds	CUC Time Fraction
4	4	8	8	16	16	8	(P-Field[4:5] + 1)*8	P-Field[6:7]*8

Figure 5-3: Telemetry source packet format

5.2.2 Source Packet Header

5.2.2.1 Packet ID

Version number	3 bits	Shall be set to '000'.
Туре	1 bit	Shall be set to '0' for TM packet.
Data Field Header Flag	1 bit	Shall be set to '1' since a DFH will follow.
Application Process ID	11 bits	The Application Process ID corresponds uniquely to an on-board application which is the source of this packet.
		APID = 0 is reserved for the time packet
		APID = 11111111111 (11 ones) is reserved for idle packets.
		APID = 100 for the payload science data
		APID = 51 for the NAVATT data

AWS DDB ICD

5.2.2.2 Packet sequence control

Grouping flags	2 bits	00- Packet contains a continuation of User Data 01- Packet contains the first segment of User Data 10- Packet contains the last segment of User Data 11- Packet contains unsegmented user data Note: Segmented data is used on AWS
Source Sequence Count	14 bits	A separate source sequence count shall be maintained by each APID and shall be incremented by 1 whenever it releases a packet. Therefore the counter corresponds to the order of release of packets by the source and enables the destination (e.g. the ground system) to detect missing packets. This counter should never re-initialize; however, under no circumstances shall it "short-cycle" (i.e. have a discontinuity other than to a value zero). The counter wraps around from $(2^{14} - 1)$ to zero.

5.2.2.3 Packet length

Packet Length	16 bits	The packet length field specifies the number of octets contained within the packet data field. The number shall be an unsigned integer 'C', where:
		C = (Number of octets in packet data field) - 1
		Note: The actual length of the entire TM source packet, including the source packet header, is 7 octets longer.
		The maximum length of a TM source packet including packet header is 1024 octets for Innosat AWS Platform TM, and 16384 octets for Payload Science TM.

5.2.3 Packet Data Field

5.2.3.1 Data Field Header

TM Source Packet PUS Version Number	4 bits	Shall be set to '0010'.
Spacecraft Time Reference Status	4 bits	This field informs user of the status of the CUC time reference:
		0000 = "Undefined"
		0001 = "Not synchronized"
		0010 = "Coarse". Timekeeping after detection of at least one GNSS
		0011 = "Coarse From Fine". Timekeeping after transition from Spacecraft Time Reference Status "Fine", i e with less than 4 GNSS.
		0100 = "Fine". Timekeeping with at least 4 GNSS
Service Type	8 bits	This indicates the Service to which this telemetry source packet relates.

AWS DDB ICD

		Service types 0 to 127 are reserved for services specified in [AD2] (ECSS-E-70-41B); service types 128 to 255 are mission-specific. NAVATT: 3 SCIENCE: 128
Service Sub-type	8 bits	Together with the service type, the subtype uniquely identifies the nature of the service report constituted by this telemetry source packet. Within standard services, subtypes 0 to 127 are reserved for [AD2] (ECSS-E-70-41B), subtypes 128 to 255 are mission-specific.
		Within mission-specific services, all subtypes (0 to 255) are available for mission-specific use.
		The definition of service type and subtype shall be unique across all application processes and the combination of these fields can be used on the ground to determine the processing priority level.
		NAVATT: 25
		SCIENCE: 25
Message Type Counter	16 bits	This field is not used by any onboard service. Shall be set to '0'.
Destination ID	16 bits	Two Destination Ids are considered for the application processes:
		'0': Ground
		'1': On-board
Preamble	8 bits	P-Field with value according to in [AD1] (CCSDS 301.0-B- 3):
		Bit 0 Extension Value = 0 (No extension) Flag
		Bit 1-3 Time Value = 1 or 2 Code Id
		Bit 4-5 Coarse Time Value = number octets - 1
		Bit 6-7 Fine Time Value = number octets
		Preamble Value for AWS are:
		• 00101111b = 2Fh = 47d
		which implies:
		 Extension Flag = 0 Time Code Id = 2 Coarse Time = 3 Fine Time = 3

AWS DDB ICD

CUC Time Seconds	4*8 bits	The on-board coarse reference time of the packet CUC format (seconds), as defined in [AD1] (CCSDS 301.0-B-3).
		The packet on-board time corresponds to any well-defined time before the sampling of any data within the packet.
		For AWS 4 * 8 bits are used, containing seconds since GPS Epoch 1980-01-06 00:00:00 with no leap seconds.
CUC Time Fraction	3*8 bits	The on-board fine reference time of the packet CUC format (fraction), as defined in [AD1] (CCSDS 301.0-B-3).
		The packet on-board time corresponds to any well-defined time before the sampling of any data within the packet.
		For AWS 3 * 8 bits are used, containing the fraction of the second in CUC Time Seconds field.

5.2.3.2 Source Data

The packet source data constitute the data element of the telemetry reports to the ground.

Details on the structure of the TM source data is specified in §6.

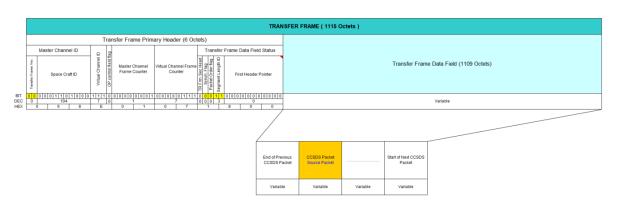
Compression is not used for platform or payload telemetry.

5.2.3.3 Spare

In order to make sure that the overall packet size is an integral number of words, spare bits may be used for padding purposes at the end of the source data. The word size is for all application processes is one octet. Padding to achieve packets with integral number of words is mandatory in PUS issue 2, see 7.4.3.2c [AD3].

5.2.3.4 Packet error control

The packet error control field transports an error detection code that can be used by the ground system to verify the integrity of the complete telemetry source packet. The presence of the PEC and its type is fixed for the complete mission.


Packet error control 16	Source Packet (excluding	16 bits	CRC-16-CCITT, calculated over the complete TM Source Packet (excluding the PEC itself), see B.1 [AD3].
-------------------------	--------------------------	---------	--

5.3 TELEMETRY TRANSFER FRAME

All Telemetry Transfer Frames must conform to the format shown in Figure 5-4.

AWS DDB ICD

5.3.1 Transfer frame length

A standard Transfer Frame Length of 1115 octets shall be used. This length corresponds to a standard Reed-Solomon code block structure, with an interleaving depth of five, and it shall result in a total R-S code block length of 1275 octets. After ASM insertion, the complete CADU length is 1279 octets.

5.3.2 Transfer frame primary header

5.3.2.1 Transfer frame identification

Version Number	Shall be set to '00'.
S/C Identification	Refer to section Annex G
Virtual Channel Identification	This 3-bit field enables up to eight Virtual Channels to be run on a particular physical data channel. Refer to section B.1.
Operational Control Field Flag	This 1-bit field indicates the presence (value = '1') or absence (value = '0') of the Operational Control Field within the Transfer Frame Trailer.
	The Operational Control Field Flag shall be set to 0 for L-band data, indicating no OCF and therefore no Transfer Frame Trailer.

5.3.2.2 Master channel frame count

The Master Channel Frame Count provides an 8-bit sequential up-count of each Transfer Frame generated by the platform on the Master Channel. The counter must be left free running, i.e. it shall never be short-cycled. When the counter is "full", it shall be reset to '0'.

5.3.2.3 Virtual channel frame count

The Virtual Channel Frame Count is used in association with the Virtual Channel Identifier. It provides a separate 8-bit up-counter for each of the Virtual Channels. These counters must be free running, i.e. they shall never be short-cycled. When the counter is "full", it shall be reset to '0'.

AWS DDB ICD

5.3.2.4 Frame data field status

Secondary Header FlagThis flag indicates the presence (value = '1') or absence (value '0') of the Transfer Frame Secondary Header. No Secondary Header shall be used (see section 5.3.3), and flag shall therefore be set to '0'.Synchronisation FlagThis flag indicates whether or not the packet data units are inserted into the Transfer Frame data field on octet boundaries they are, then they are said to be "synchronously inserted" (packet octet boundaries align with frame octet boundaries) a the standard extraction technique is valid (value = '0'). If the flag indicates "asynchronous" data insertion (value = '1') means that unstructured (non-packetized) data contents or packets are inserted, without regard to octet boundaries. The receiving end will not be able to reconstitute the original data without additional knowledge and shall ignore the remaining frame data.All telemetry data on Innosat AWS shall be packetized and th flag shall therefore be set to '0'.Packet Order FlagDuring real-time transmission of data from spacecraft sources the group of the group of the Transmission of data from spacecraft sources	the s. If nd , it sets
flag shall therefore be set to '0'.Synchronisation FlagThis flag indicates whether or not the packet data units are inserted into the Transfer Frame data field on octet boundaries they are, then they are said to be "synchronously inserted" (packet octet boundaries align with frame octet boundaries) a the standard extraction technique is valid (value = '0'). If the flag indicates "asynchronous" data insertion (value = '1') means that unstructured (non-packetized) data contents or packets are inserted, without regard to octet boundaries. The receiving end will not be able to reconstitute the original data without additional knowledge and shall ignore the remaining frame data.All telemetry data on Innosat AWS shall be packetized and th flag shall therefore be set to '0'.Packet Order FlagDuring real-time transmission of data from spacecraft sources	s. If nd , it sets
inserted into the Transfer Frame data field on octet boundaries they are, then they are said to be "synchronously inserted" (packet octet boundaries align with frame octet boundaries) a the standard extraction technique is valid (value = '0').If the flag indicates "asynchronous" data insertion (value = '1') means that unstructured (non-packetized) data contents or packets are inserted, without regard to octet boundaries. The receiving end will not be able to reconstitute the original data without additional knowledge and shall ignore the remaining frame data.All telemetry data on Innosat AWS shall be packetized and th flag shall therefore be set to '0'.Packet Order FlagDuring real-time transmission of data from spacecraft sources	nd , it sets
means that unstructured (non-packetized) data contents or packets are inserted, without regard to octet boundaries. The receiving end will not be able to reconstitute the original data without additional knowledge and shall ignore the remaining frame data.All telemetry data on Innosat AWS shall be packetized and th flag shall therefore be set to '0'.Packet Order FlagDuring real-time transmission of data from spacecraft sources	sets
flag shall therefore be set to '0'. Packet Order Flag During real-time transmission of data from spacecraft sources	e
the ground, the order of the Telemetry Packets inserted withir Transfer Frames will be defined as 'forward justified'. This me that they will appear with the most significant bit transmitted fi and with their sequence counters increasing. The TT&C Cont Module of the S/C platform contains an FLASH mass memory module, which can be read out in forward order.	the ans rst, rol
In the Packet Telemetry Standard only the forward order of synchronous insertion of packets is recognised. Therefore, the flag shall always be set to '0'.)
Segment Length Identifier The Segment Length Identifier shall be set to '11',	
First Header Pointer The First Header Pointer sub-field points directly to the location the starting octet of the first packet header structure within the frame data field. It counts from the end of the primary header effectively delimits the beginning of the first packet. The packet, so on. Since the pointer counts octets, this feature works only when the headers are aligned with octet boundaries, i.e., whe the packet data are synchronously inserted (data field synchronization flag set to '0').	and et and
The eleven bits allocated to the pointer allow for a count to 20 octets, which exceeds the count required to point to an octet a the end of the data field. Special pointer values are used to denote:	
No packet/segment header is contained in this frame there is valid data; "11111111111".	, but
 No valid data is contained in this frame ("idle channel "1111111110". 	ıel").

AWS DDB ICD

Note: This feature is used to detect instrument science packets spread out over multiple transfer frames

5.3.3 Transfer frame secondary header

A Secondary Header shall not be used.

5.3.4 Transfer frame data field

The Transfer Frame data field contains an integral number of octets of data (e.g., Source Packets) to be transmitted from the spacecraft to the ground. The length of this field is 1109 octets (1115 - 6) for L-band.

5.3.5 Channel encoding and pseudo-randomization

<u>L-band</u>

The encoding scheme for the telemetry at frame level is

- Reed-Solomon (255,223) with an interleaving depth of 5 as outer code
- Convolutional encoding (7,1/2) for the inner code

In accordance with the definition in [AD4] & [AD2]. Pseudo-randomization is applied after RS encoding to guarantee sufficient bit transition to ensure bit synchronisation.

5.4 CHANNEL ACCESS DATA UNIT

The Channel Access Data Unit format shall conform to the requirements of [AD4].

For AWS, the ASM synchronization marker in L-band is: **1ACFFC1D**.

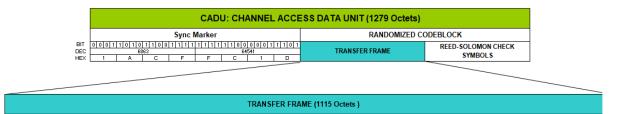


Figure 5-5 CADU structure

6. S/C SCIENCE TELEMETRY DATA

6.1 INSTRUMENT DATA

The radiometer will measure absolute power on the 54, 89, 166/183 and 325 GHz bands, subdivided into 19 sub-bands (or channels), expressed in Kelvin (K).

Channel	Receiver	RF center frequency [MHz]	IF Center frequency [MHz]	Bandwidth [MHz]
AWS-11	54GHz	50.3	2300	180
AWS-12	54GHz	52.8	4800	400
AWS-13	54GHz	53.246	5246	300
AWS-14	54GHz	53.596	5596	370
AWS-15	54GHz	54.4	6400	400
AWS-16	54GHz	54.94	6940	400
AWS-17	54GHz	55.5	7500	330
AWS-18	54GHz	57.290344	9290.344	330
AWS-21	89GHz	89	No IF	4000
AWS-31	183GHz	165.5	2924	2800
AWS-32	183GHz	176.311	13735	2000
AWS-33	183GHz	178.811	16235	2000
AWS-34	183GHz	180.311	17735	1000
AWS-35	183GHz	181.511	18935	1000
AWS-36	183GHz	182.311	19735	500
AWS-41	325GHz	325.15 ± 1.20	1200	800
AWS-42	325GHz	325.15 ± 2.40	2400	1200
AWS-43	325GHz	325.15 ± 4.10	4100	1800
AWS-44	325GHz	325.15 ± 6.60	6600	2800

 Table 6-1 AWS frequency band plan

AWS DDB ICD

6.1.1 Auxiliary data

plcDpticsAzimuth Degrees Per-receiver Azimuth angle plcDupticsAzimuth Degrees Per-receiver Elevation angle plcMederOffset Degrees Per-receiver Elevation angle plcWeightsObet Unitless OBCT calibration coefficients plcTempObctAde Volt OBCT PI1000 adc value to resistance plcTempObctResTemp KelvinVolt Resistance to Temperature coefficients plcTempObctLimit Kelvin Onto-f-range upper/lower plcTempPauVref Volt NTC circuit R1 resistor value plcTempPauVref Volt NTC circuit R2 resistor value plcTempPauR2 Ohm NTC circuit R2 resistor value plcTempPauR3 Ohm NTC circuit R2 resistor value plcTempPauR4 Kelvin Sensor nominal resistance plcTempPauR3 plcTempPauR3 Ohm NTC circuit R1 resistor value plcTempPauR4 Kelvin Sensor notical resistance plcTempPauR4 plcTempPauR3 Ohm NTC circuit R1 resistor value plcTempPauR4 KelvinOhm NTC circuit R1 resistor value plcTemplcuR4 Ohm NTC ci	Variable	Unit	Description
plcOpticsElevation Degrees Per-receiver Elevation angle pkEncoderOffset Degrees Mirror offset angle pkWeightsObet Unitless OBCT calibration coefficients pkTempObctAde Volt OBCT calibration coefficients pkTempObctAde Volt OBCT Periloo ade value to resistance pkTempObctLinit Kelvin/Volt Resistance to Temperature coefficients pkTempObctAde Volt ADC reference voltage pkTempObctBatint Kelvin Out-of-range upper/lower pkTempPsuVade Volt NTC circuit R2 resistor value pkTempPsuBat Kelvin/Ohm NTC sensor talls resistor value pkTempPsuBat Kelvin/Ohm NTC sensor talle pkTempPsuBat Kelvin/Ohm NTC circuit R1 resistor value pkTempleuRat Ohm NTC circuit R1 resistor value pkTempleuRat Ohm NTC circuit R1 resistor value pkTempleuRat Ohm NTC circuit R1 resistor value pkTempleuRat Kelvin/Ohm NTC sensor nominal resistance pkTempleuRat Melvin/Ohm NTC sensor talea	plcOpticsAzimuth		
picEncoderOffset Degrees Mirror offset angle picWeightsObt Unitless OBCT calibration coefficients picWeightsCold Unitless COLD calibration coefficients picTempObctAdc Volt OBCT PT1000 add value to resistance picTempObctRes2Temp Kelvin/Volt Resistance to Temperature coefficients picTempPsuVad Volt ADC reference voltage picTempPsuVref Volt NTC circuit R1 resistor value picTempPsuR2 Ohm NTC circuit R2 resistor value picTempPsuR3 Ohm NTC circuit R2 resistor value picTempPsuR4 Kelvin/Ohm NTC sensor nominal resistance picTempPsuR25 Ohm NTC circuit R2 resistor value picTempPsuR4 Volt ADC reference voltage picTempPsuR5 Ohm NTC sensor nominal resistance picTempRuR4 Nth Nth R1C circuit R2 resistor value picTempIcuR4 Ohm NTC circuit R2 resistor value picTempIcuR4 Ohm NTC circuit R2 resistor value picTempIcuR3 Ohm NTC circuit R2 resistor value			
picWeightsObet Unitless OBCT calibration coefficients picTempObctAdc Volt OBCT PT1000 adc value to resistance picTempObctAdc Volt OBCT PT1000 adc value to resistance picTempObctLinnit Kelvin/Volt Resistance to Temperature coefficients picTempObctLinnit Kelvin/Volt Resistance to Temperature coefficients picTempPsuR1 Ohm NTC circuit R1 resistor value picTempPsuR2 Ohm NTC circuit R1 resistor value picTempPsuR3 Ohm NTC sensor beta value picTempPsuR4 Kelvin/Ohm NTC sensor nominal resistance picTempPsuR5 Ohm NTC circuit R1 resistor value picTempPsuL1mit Kelvin/Ohm NTC circuit R1 resistor value picTempPsuL1mit Kelvin/Ohm NTC circuit R1 resistor value picTempPsuL1mit Kelvin/Ohm NTC circuit R2 resistor value picTempIcuR3 Ohm NTC circuit R2 resistor value picTempIcuR4 Ohm NTC circuit R2 resistor value picTempIcuR3 Ohm NTC sensor nominal resistance picTempIcuR4 Volt A			Mirror offset angle
pkWeghtsCold Unitless COLD calibration coefficients pkTempObctAdc Volt OBCT PT1000 ade value to resistance pkTempObctLimit Kelvin/Volt Resistance to Temperature coefficients pkTempObctLimit Kelvin Out-of-range upper/lower pkTempPsuVref Volt ADC reference voltage pkTempPsuR2 Ohn NTC circuit R2 resistor value pkTempPsuR3 Ohn NTC circuit R2 resistor value pkTempPsuR4 Ohn NTC circuit R2 resistor value pkTempPsuR5 Ohm NTC sensor nominal resistance pkTempPsuR64 Volt ADC reference voltage pkTempPsuR5 Ohm NTC circuit R2 resistor value pkTempPsuR64 Volt NTC circuit reference voltage pkTempPsuR64 Volt NTC circuit R2 resistor value pkTempPsuR75 Ohm NTC circuit R2 resistor value pkTempLeuX1 Ohm NTC circuit R2 resistor value pkTempLuX1 Ohm NTC sensor nominal resistance pkTempLuX2 Ohm NTC circuit R2 resistor value pkTempLuX3			
picTempObctAde Volt OBCT PT1000 adc value to resistance picTempObcRes2Temp Kelvin/Volt Resistance to Temperature coefficients picTempObcRes2Temp Kelvin/Volt Resistance to Temperature coefficients picTempObcRes2Temp Volt ADC reference voltage picTempPsuR1 Ohm NTC circuit R1 resistor value picTempPsuR2 Ohm NTC circuit R1 resistor value picTempPsuR3 Ohm NTC sensor beta value picTempPsuR4 Kelvin/Ohm NTC sensor nominal resistance picTempPsuR5 Ohm NTC sensor nominal resistance picTempPsuR4 Volt ADC reference voltage picTempPsuR5 Ohm NTC circuit R1 resistor value picTempIcuR4 Ohm NTC circuit R1 resistor value picTempIcuR3 Ohm NTC sensor nominal resistance picTempIcuR3 Ohm NTC sensor nominal resistance picTempIcuR4 Volt ADC reference voltage picTempIcuR3 Ohm NTC sensor nominal resistance picTempIcuR4 Volt ADC reference voltage pi			
picTempObctRes2Temp Kelvin/Volt Resistance to Temperature coefficients picTempDotLimit Kelvin Out-of-range upper/lower picTempPsuVadc Volt ADC reference voltage picTempPsuVref Volt NTC circuit reference voltage picTempPsuVref Volt NTC circuit R2 resistor value picTempPsuR2 Ohm NTC circuit R3 resistor value picTempPsuBeta Kelvin/Ohm NTC sensor beta value picTempPsuBeta Kelvin/Ohm NTC sensor beta value picTempPsuBeta Kelvin/Ohm NTC sensor totage picTempPsuBeta Kelvin/Ohm NTC sensor totage picTempPsuBeta Kelvin/Ohm NTC sensor totage picTempIcuVadc Volt ADC reference voltage picTempIcuR3 Ohm NTC sensor beta value picTempIcuR4 Kelvin/Ohm NTC sensor totage picTempIcuR3 Ohm NTC sensor totage picTempAuxVadc Volt ADC reference voltage picTempAuxVadc Volt NTC sensor totage picTempAuxVadc Volt NTC c			
picTempObctLimit Kelvin Out-of-range upper/lower picTempPsuVacc Volt ADC reference voltage picTempPsuVref Volt NTC circui reference voltage picTempPsuR1 Ohm NTC circui reference voltage picTempPsuR2 Ohm NTC circui reference voltage picTempPsuBeta KelvinOhm NTC sensor beta value picTempPsuR25 Ohm NTC sensor nominal resistance picTempPsuR4 KelvinOhm NTC sensor nominal resistance picTempTexuPsuR55 Ohm NTC circui reference voltage picTempTexuPsuR4 KelvinOhm NTC circui reference voltage picTempTexuPsuR5 Ohm NTC circui reference voltage picTempIcuR4 Ohm NTC circui reference voltage picTempIcuR5 Ohm NTC circui reference voltage picTempIcuR4 KelvinOhm NTC sensor nominal resistance picTempAuxVadc Volt ADC reference voltage picTempAuxVadc Volt ADC reference voltage picTempAuxVadc Volt NTC circui reference voltage picTempAuxR3			
picTempPsuVadcVoltADC reference voltagepicTempPsuR1OhmNTC circuit reference voltagepicTempPsuR2OhmNTC circuit R1 resistor valuepicTempPsuR3OhmNTC circuit R2 resistor valuepicTempPsuB4Kelvin/OhmNTC sensor beta valuepicTempPsuB4Kelvin/OhmNTC circuit R1 resistor valuepicTempIcuVadcVoltADC reference voltagepicTempIcuR4OhmNTC circuit R1 resistor valuepicTempIcuR5OhmNTC circuit R2 resistor valuepicTempIcuR6Kelvin/OhmNTC sensor beta valuepicTempIcuR75OhmNTC sensor beta valuepicTempIcuR84Kelvin/OhmNTC sensor beta valuepicTempIcuR75OhmNTC circuit R1 resistor valuepicTempAuxVadcVoltADC reference voltagepicTempAuxVadVoltNTC circuit R1 resistor valuepicTempAuxR1OhmNTC circuit R2 resistor valuepicTempAuxR2OhmNTC circuit R2 resistor valuepicTempAuxR3OhmNTC circuit R2 resistor valuepicTempAuxR4OhmNTC circuit R2 resistor valuepicTempAuxR5OhmNTC circuit R2 resistor valuepicTempAuxR25OhmNTC circuit R2 resistor valuepicTempAuxR25OhmNTC circuit R			
plcTempPsuVrefVoltNTC circuit reference voltageplcTempPsuR1OhmNTC circuit R resistor valueplcTempPsuR2OhmNTC circuit R resistor valueplcTempPsuR3OhmNTC circuit R2 resistor valueplcTempPsuR4Kelvin/OhmNTC sensor beta valueplcTempPsuR25OhmNTC sensor nominal resistanceplcTempPsuR45OhmNTC sensor nominal resistanceplcTempPsuR47VoltADC reference voltageplcTempIcuVrefVoltNTC circuit reference voltageplcTempIcuR4OhmNTC circuit reference voltageplcTempIcuR3OhmNTC circuit R1 resistor valueplcTempIcuR4OhmNTC circuit R3 resistor valueplcTempIcuR5OhmNTC sensor beta valueplcTempIcuR4Kelvin/OhmNTC sensor out-of-range upper/lowerplcTempLuB4Kelvin/OhmNTC circuit R1 resistor valueplcTempAuxVacVoltADC reference voltageplcTempAuxVrefVoltNTC circuit resistor valueplcTempAuxVrefVoltNTC circuit R1 resistor valueplcTempAuxR25OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R2 resistor valueplcTempAuxR4OhmNTC circuit R2 resistor valueplcTempAuxR55OhmNTC circuit R2 resistor valueplcTempLaterVadeVoltADC reference voltageplcTempLaterVadeVoltADC reference voltageplcTempLaterVadeVoltADC reference voltageplcTempLaterVadeVolt<			
pkTempPsuR1 Ohm NTC circuit R1 resistor value pkTempPsuR2 Ohm NTC circuit R2 resistor value pkTempPsuR3 Ohm NTC circuit R2 resistor value pkTempPsuR4 Kelvin/Ohm NTC sensor beta value pkTempPsuR4 Kelvin/Ohm NTC sensor nominal resistance pkTempPsuR4 Kelvin Sensor out-of-range upper/lower pkTempPsuR4 Volt ADC reference voltage pkTempLumit Kelvin Sensor out-of-range upper/lower pkTempLuR4 Ohm NTC circuit R2 resistor value pkTempLuR3 Ohm NTC sensor beta value pkTemplcuR4 Kelvin/Ohm NTC sensor out-of-range upper/lower pkTempLuR4 Kelvin/Ohm NTC sensor out-of-range upper/lower pkTempLuLinit Kelvin Sensor out-of-range upper/lower pkTempLawX4dc Volt ADC reference voltage pkTempAuxYadc Volt NTC circuit R2 resistor value pkTempAuxR4 Ohm NTC circuit R2 resistor value pkTempAuxR4 Ohm NTC circuit R2 resistor value pkTempLawR4			
pkTempPsuR2 Ohm NTC circuit R2 resistor value pkTempPsuR4 Ohm NTC circuit R3 resistor value pkTempPsuR4 Kelvin/Ohm NTC sensor bar value pkTempPsuLimit Kelvin/Ohm NTC sensor nominal resistance pkTempPsuLimit Kelvin/Ohm NTC sensor out-of-range upper/lower pkTempLetVref Volt NTC circuit R1 resistor value pkTempLetR1 Ohm NTC circuit R3 resistor value pkTempLetR2 Ohm NTC circuit R3 resistor value pkTempLetR3 Ohm NTC sensor beta value pkTempLetR4 Kelvin/Ohm NTC sensor nominal resistance pkTempLetR4 Kelvin/Ohm NTC circuit R1 resistor value pkTempAuxVade Volt ADC reference voltage pkTempAuxVade Volt NTC circuit R1 resistor value pkTempAuxR1 Ohm NTC circuit R2 resistor value pkTempAuxR2 Ohm NTC circuit R2 resistor value pkTempAuxR3 Ohm NTC circuit R2 resistor value pkTempAuxR4 Ohm NTC circuit R2 resistor value pkTempAuxR4			
pkTempPsuR3 Ohm NTC circuit R3 resistor value pkTempPsuR42 Kelvin/Ohm NTC sensor beta value pkTempPsuR425 Ohm NTC sensor beta value pkTempPsuLimit Kelvin/Ohm NTC sensor nominal resistance pkTempLetWref Volt ADC reference voltage pkTempLetWref Volt NTC circuit R1 resistor value pkTempLetR1 Ohm NTC circuit R2 resistor value pkTempLetR2 Ohm NTC sensor nominal resistance pkTempLetR3 Ohm NTC sensor nominal resistance pkTempLetR4 Kelvin/Ohm NTC sensor nominal resistance pkTempLatB4ta Kelvin/Ohm NTC sensor nominal resistance pkTempAuxVaf Ohm NTC circuit R2 resistor value pkTempAuxVaf Volt NTC circuit R2 resistor value pkTempAuxR3 Ohm NTC circuit R2 resistor value pkTempAuxR3 Ohm NTC circuit R2 resistor value pkTempAuxR4 Ohm NTC circuit R2 resistor value pkTempAuxR3 Ohm NTC sensor nominal resistance pkTempAuxR4 O			
pkTempPsuBetaKelvin/OhmNTC sensor beta valuepkTempPsuLinitKelvinSensor out-of-range upper/lowerpkTempPsuLinitKelvinADC reference voltagepkTempIcuVadeVoltADC reference voltagepkTempIcuVrefVoltNTC circuit reference voltagepkTempIcuR1OhmNTC circuit resistor valuepkTempIcuR2OhmNTC circuit R3 resistor valuepkTempIcuR3OhmNTC circuit R3 resistor valuepkTempIcuR4Kelvin/OhmNTC sensor beta valuepkTempIcuR5OhmNTC sensor beta valuepkTempIcuR4Kelvin/OhmNTC sensor beta valuepkTempIcuR5OhmNTC circuit R3 resistor valuepkTempAuxVadeVoltADC reference voltagepkTempAuxVrefVoltNTC circuit R1 resistor valuepkTempAuxR3OhmNTC circuit R3 resistor valuepkTempAuxR4OhmNTC circuit R3 resistor valuepkTempAuxR5OhmNTC sensor nominal resistancepkTempAuxR4VoltNTC sensor nominal resistancepkTempAuxLinitKelvin/OhmNTC circuit R3 resistor valuepkTempAuxLinitKelvin/OhmNTC circuit R3 resistor valuepkTempHeaterVadeVoltADC reference voltagepkTempHeaterR2OhmNTC circuit R1 resistor valuepkTempAuxLinitKelvin/OhmNTC circuit R1 resistor valuepkTempHeaterR2OhmNTC circuit R1 resistor valuepkTempHeaterR3OhmNTC circuit R1 resistor valuepkTempHeaterR4Ohm<			
plcTempPsuR25OhmNTC sensor nominal resistanceplcTempPsuLimitKelvinSensor out-of-range upper/lowerplcTempIcuVadeVoltADC reference voltageplcTempIcuVirefVoltNTC circuit reference voltageplcTempIcuR2OhmNTC circuit R1 resistor valueplcTempIcuR3OhmNTC circuit R3 resistor valueplcTempIcuR4Kelvin/OhmNTC sensor beta valueplcTempIcuR5OhmNTC sensor beta valueplcTempIcuR25OhmNTC sensor out-of-range upper/lowerplcTempIcuLimitKelvinSensor out-of-range upper/lowerplcTempAuxVadeVoltADC reference voltageplcTempAuxVadeVoltNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR25OhmNTC sensor beta valueplcTempAuxR25OhmNTC sensor beta valueplcTempHaterVadeVoltADC reference voltageplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR1OhmNTC sensor beta valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterR4Kelvin/OhmNTC circuit R2 resistor valueplcTempHeaterR5OhmNTC circuit R3 resistor valueplcTempHeaterR1			
plcTempPsuLimitKelvinSensor out-of-range upper/lowerplcTemplcuVadeVoltADC reference voltageplcTemplcuVrefVoltNTC circuit reference voltageplcTemplcuR1OhmNTC circuit R1 resistor valueplcTemplcuR2OhmNTC circuit R1 resistor valueplcTemplcuR3OhmNTC circuit R1 resistor valueplcTemplcuR4Kelvin/OhmNTC sensor beta valueplcTemplcuR55OhmNTC sensor beta valueplcTemplcuR25OhmNTC circuit R3 resistor valueplcTempAuxVadeVoltADC reference voltageplcTempAuxVadVoltNTC circuit reference voltageplcTempAuxV1OhmNTC circuit R1 resistor valueplcTempAuxR1OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC sensor nominal resistanceplcTempAuxBaKelvin/OhmNTC sensor nominal resistanceplcTempAuxBaVoltADC reference voltageplcTempAuxBaVoltNTC circuit R3 resistor valueplcTempAuxBaVoltNTC circuit R2 resistor valueplcTempAuxBaOhmNTC circuit R2 resistor valueplcTempAuxBaVoltNTC circuit R2 resistor valueplcTempAuxBaVoltNTC circuit R2 resistor valueplcTempAuxBaVoltNTC circuit R2 resistor valueplcTempAuxBaOhmNTC circuit R2 resistor valueplcTempAuxBaOhmNTC circuit R3 resistor valueplcTempAuxBaOhmNTC circuit R2 resistor valueplcTempHeaterR2Ohm </th <th></th> <th></th> <th></th>			
plcTempIcuVadcVoltADC reference voltageplcTempIcuVrefVoltNTC circuit reference voltageplcTempIcuR1OhmNTC circuit R1 resistor valueplcTempIcuR2OhmNTC circuit R2 resistor valueplcTempIcuR3OhmNTC sensor beta valueplcTempIcuR4Kelvin/OhmNTC sensor nominal resistanceplcTempIcuR5OhmNTC sensor nominal resistanceplcTempIcuLimitKelvin/OhmNTC sensor nominal resistanceplcTempAuxVadcVoltADC reference voltageplcTempAuxVadcVoltNTC circuit R2 resistor valueplcTempAuxR1OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R3 resistor valueplcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxR4VoltADC reference voltageplcTempAuxR5OhmNTC sensor nominal resistanceplcTempAuxR6VoltADC reference voltageplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R2 resistor valueplcTempHeaterR4VoltADC reference voltageplcTempHeaterR5OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcT			
plcTempIcuVrefVoltNTC circuit reference voltageplcTempIcuR1OhmNTC circuit R1 resistor valueplcTempIcuR2OhmNTC circuit R2 resistor valueplcTempIcuR3OhmNTC circuit R3 resistor valueplcTempIcuR43OhmNTC sensor beta valueplcTempIcuR5OhmNTC sensor beta valueplcTempIcuR5OhmNTC sensor nominal resistanceplcTempAuxVadcVoltADC reference voltageplcTempAuxVrefVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R2 resistor valueplcTempAuxR4Kelvin/OhmNTC sensor nominal resistanceplcTempAuxR5OhmNTC sensor nominal resistanceplcTempAuxR25OhmNTC sensor nominal resistanceplcTempAuxR4Kelvin/OhmNTC circuit R2 resistor valueplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R2 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC sensor nominal resistanceplcTempHeaterR3OhmNTC sensor nominal resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistor valueplcTempHeaterR5OhmNTC sensor nominal resistor valueplcTempHeaterR4VoltOhmNTC circuit R2 resistor valueplcTempHeaterR5OhmNTC sensor nominal			
plcTempIcuR1OhmNTC circuit R1 resistor valueplcTempIcuR2OhmNTC circuit R2 resistor valueplcTempIcuR3OhmNTC circuit R3 resistor valueplcTempIcuR45OhmNTC sensor beta valueplcTempIcuR55OhmNTC sensor nominal resistanceplcTempIcuR476VoltADC reference voltageplcTempAuxVadcVoltADC reference voltageplcTempAuxVad2VoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R2 resistor valueplcTempAuxR4Kelvin/OhmNTC sensor beta valueplcTempAuxR55OhmNTC sensor beta valueplcTempAuxR25OhmNTC sensor beta valueplcTempHeaterVrefVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterVrefVoltNTC circuit R1 resistor valueplcTempHeaterR3OhmNTC circuit R1 resistor valueplcTempHeaterR4Kelvin/OhmNTC circuit R1 resistor valueplcTempHeaterR4Kelvin/OhmNTC circuit R2 resistor valueplcTempHeaterR4OhmNTC circuit R1 resistor valueplcTempHeaterR5OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistance			
plcTempIcuR2OhmNTC circuit R2 resistor valueplcTempIcuR3OhmNTC circuit R2 resistor valueplcTempIcuR43Kelvin/OhmNTC sensor beta valueplcTempIcuR25OhmNTC sensor nominal resistanceplcTempIcuR25OhmNTC sensor nominal resistanceplcTempIcuR25OhmNTC circuit reference voltageplcTempAuxVadcVoltADC reference voltageplcTempAuxVrefVoltNTC circuit reference voltageplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxR4Kelvin/OhmNTC sensor beta valueplcTempAuxR55OhmNTC sensor nominal resistanceplcTempAuxR25OhmNTC sensor nominal resistanceplcTempAuxR25OhmNTC circuit R3 resistor valueplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R3 resistor valueplcTempHeaterR25OhmNTC circuit R3 resistor valueplcTempHeaterR3OhmNTC sensor beta valueplcTempHeaterR4Kelvin/OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcTempHeaterR25OhmNTC circuit R3 resistor valueplcTempHeaterR25OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverAdcVoltADC value to voltage<			
plcTempIcuR3OhmNTC circuit R3 resistor valueplcTempIcuBetaKelvin/OhmNTC sensor beta valueplcTempIcuR25OhmNTC sensor nominal resistanceplcTempIcuLimitKelvinSensor out-of-range upper/lowerplcTempAuxVadcVoltADC reference voltageplcTempAuxVrefVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R2 resistor valueplcTempAuxR2OhmNTC circuit R3 resistor valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxBetaKelvinSensor out-of-range upper/lowerplcTempHaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R2 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC sensor beta valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR4VoltNDMplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta			
plcTempIcuBetaKelvin/OhmNTC sensor beta valueplcTempIcuR25OhmNTC sensor beta valueplcTempIcuLimitKelvinSensor out-of-range upper/lowerplcTempAuxVadcVoltADC reference voltageplcTempAuxVadcVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R3 resistor valueplcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxR4Kelvin/OhmNTC sensor beta valueplcTempAuxR5OhmNTC sensor beta valueplcTempAuxR1Kelvin/OhmNTC sensor out-of-range upper/lowerplcTempHaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R1 resistor valueplcTempHeaterR3OhmNTC circuit R1 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR4VoltNDC sensor beta valueplcTempHeaterR5OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverAdcVoltADC value to voltageplcTempHeaterR5OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC sensor out-of-range upper/lowerplcTempHeaterB4Kelvin/OhmNTC sensor out-of-range upper/lower			
plcTempIcuLinitOhmNTC sensor nominal resistanceplcTempLuxVadcVoltADC reference voltageplcTempAuxVadcVoltADC reference voltageplcTempAuxVrefVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC sensor beta valueplcTempAuxR4Kelvin/OhmNTC sensor nominal resistanceplcTempAuxR5OhmNTC sensor nominal resistanceplcTempAuxR5OhmNTC sensor nominal resistanceplcTempAuxR5OhmNTC sensor nominal resistanceplcTempHeaterVrefVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R1 resistor valueplcTempHeaterR3OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcTempReceiverBeR1OhmNTC circuit R2 r			
plcTempIcuLimitKelvinSensor out-of-range upper/lowerplcTempAuxVadcVoltADC reference voltageplcTempAuxVirefVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxB3OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R1 resistor valueplcTempHeaterR3OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR4VoltADC value to voltageplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverBeXadcVoltADC value to voltageplcTempReceiverBeX3OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R2 resistor valueplcTempReceiverBeR3Ohm<			
plcTempAuxVadcVoltADC reference voltageplcTempAuxR1OhmNTC circuit reference voltageplcTempAuxR2OhmNTC circuit R1 resistor valueplcTempAuxR3OhmNTC circuit R2 resistor valueplcTempAuxR4OhmNTC circuit R3 resistor valueplcTempAuxBetaKelvin/OhmNTC sensor nominal resistanceplcTempAuxBetaKelvin/OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R2 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterR25Ohm <t< th=""><th></th><th></th><th></th></t<>			
plcTempAuxVrefVoltNTC circuit reference voltageplcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxR4Kelvin/OhmNTC sensor beta valueplcTempAuxR5OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltNTC circuit R2 resistor valueplcTempHeaterVefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterR2OhmNTC sensor nominal resistanceplcTempHeaterR3OhmNTC sensor nominal resistanceplcTempHeaterR4VoltADC value to voltageplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR2OhmNTC sensor nominal resistanceplcTempHeaterR4VoltADC value to voltageplcVoltageReceiverAdcVoltADC value to currentplcCurrentReceiverLimitVoltOut-of-range upper/lowerplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeR3OhmNTC circuit R2 resistor valueplcTempReceiverBeR4OhmNTC circuit R2 resistor valueplcTempReceiverBeR5OhmNTC			
plcTempAuxR1OhmNTC circuit R1 resistor valueplcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxR25OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R3 resistor valueplcTempHeaterR3OhmNTC sensor nominal resistanceplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC sensor nominal resistanceplcVoltageReceiverLimitVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC value to currentplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeN3OhmNTC circuit R3 resistor valueplcTempReceiverBeR3OhmNTC sensor nominal resistanceplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R4plcTempReceiverBeR5OhmNTC circuit R3 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4VoltADC reference voltageplcTempReceiverBeR5Ohm <th></th> <th></th> <th></th>			
plcTempAuxR2OhmNTC circuit R2 resistor valueplcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxBetaKelvin/OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVadcVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R3 resistor valueplcTempHeaterR3OhmNTC sensor beta valueplcTempHeaterR4OhmNTC circuit R2 resistor valueplcTempHeaterR5OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterL5OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverAdcVoltOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeVadcVoltNTC sensor out-of-range upper/lowerplcTempReceiverBeVadcVoltNTC sensor valueplcTempReceiverBeVadcVoltNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R2 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor nominal resistance			
plcTempAuxR3OhmNTC circuit R3 resistor valueplcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxR25OhmNTC sensor out-of-range upper/lowerplcTempAuxLinitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit R1 resistor valueplcTempHeaterR1OhmNTC circuit R2 resistor valueplcTempHeaterR2OhmNTC circuit R3 resistor valueplcTempHeaterR3OhmNTC sensor nominal resistanceplcTempHeaterR4Kelvin/OhmNTC sensor out-of-range upper/lowerplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR4Kelvin/OhmNTC sensor nominal resistanceplcTempHeaterR5OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverAdcVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcTempReceiverBeVadVoltADC reference voltageplcTempReceiverBeN1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR5OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor no			
plcTempAuxBetaKelvin/OhmNTC sensor beta valueplcTempAuxR25OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterR26OhmNTC sensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVultageReceiverAdcVoltADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeX3OhmNTC circuit R2 resistor valueplcTempReceiverBeX3OhmNTC circuit R2 resistor valueplcTempReceiverBeBtaKelvin/OhmNTC circuit R2 resistor valueplcTempReceiverBeBtaKelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeX3OhmNTC circuit R3 resistor valueplcTempReceiverBeX3OhmNTC circuit R3 resistor valueplcTempReceiverBeX4VoltNTC circuit R3 resistor valueplcTempReceiverBeX3OhmNTC circuit R2 resistor va			
plcTempAuxR25OhmNTC sensor nominal resistanceplcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC sensor beta valueplcTempHeaterBetaKelvin/OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterR25OhmNTC sensor out-of-range upper/lowerplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeVadcVoltNTC circuit R2 resistor valueplcTempReceiverBeX3OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R2 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R2 resistor valueplcTempReceiverBeR5OhmNTC circuit R2 resistor valueplcTempReceiverBeR5OhmNTC circuit R2 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R2 resistor valueplcTempReceiverBeR5OhmNTC circuit R2 resistor valueplcTempReceiverBeR4Kelvin/Ohm <th< th=""><th></th><th></th><th></th></th<>			
plcTempAuxLimitKelvinSensor out-of-range upper/lowerplcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVultageReceiverAdcVoltOut-of-range upper/lowerplcTempReceiverAdcVoltADC reference voltageplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeR1OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBtaKelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeK3OhmNTC circuit R3 resistor valueplcTempReceiverBeLimitKelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeK4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeK4Kelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeK4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeK4Kelvin/Ohm			
plcTempHeaterVadcVoltADC reference voltageplcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverAdcVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit reference voltageplcTempReceiverBeVefVoltNTC circuit R1 resistor valueplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeR5OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverBeBetaKelvin/OhmNTC circuit R3 resistor valueplcTempReceiverBeR45OhmNTC sensor beta valueplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverBeLimitKelvi			
plcTempHeaterVrefVoltNTC circuit reference voltageplcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterR4Kelvin/OhmNTC sensor beta valueplcTempHeaterR5OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcCurrentReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcVoltADC value to currentplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVafVoltNTC circuit R1 resistor valueplcTempReceiverBeVafOhmNTC circuit R2 resistor valueplcTempReceiverBeX3OhmNTC circuit R2 resistor valueplcTempReceiverBeK4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeK5OhmNTC sensor out-of-range upper/lower			
plcTempHeaterR1OhmNTC circuit R1 resistor valueplcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverAdcVoltOut-of-range upper/lowerplcCurrentReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeVadcVoltNTC circuit R1 resistor valueplcTempReceiverBeX1OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeX5OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor per valueplcTempReceiverBeR4Kelvin/OhmNTC sensor per valueplcTempReceiverBeR5OhmNTC sensor per valueplcTempReceiverBeR4Kelvin/OhmNTC sensor per valueplcTempReceiverBeR4Kelvin/OhmNTC sensor per valueplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4KelvinSensor out-			
plcTempHeaterR2OhmNTC circuit R2 resistor valueplcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcCurrentReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverLimitAmpADC value to currentplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVaffVoltNTC circuit R1 resistor valueplcTempReceiverBeR1OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC circuit R2 resistor valueplcTempReceiverBeR5OhmNTC circuit R2 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR4Kelvin/OhmNTC sensor out-of-range upper/lowerplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR45OhmNTC sensor nominal resistance			
plcTempHeaterR3OhmNTC circuit R3 resistor valueplcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcCurrentReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverElimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltNTC circuit reference voltageplcTempReceiverBeVrefVoltNTC circuit R1 resistor valueplcTempReceiverBeR1OhmNTC circuit R3 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR5OhmNTC sensor beta valueplcTempReceiverBeR4Kelvin/OhmNTC sensor upper/lowerplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR45OhmNTC sensor beta valueplcTempReceiverBeR45OhmNTC sensor upper/lowerplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverBeLimitKelv			NTC circuit R2 resistor value
plcTempHeaterBetaKelvin/OhmNTC sensor beta valueplcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR5OhmNTC sensor nominal resistanceplcTempReceiverBeR4Kelvin/OhmNTC sensor out-of-range upper/lower			
plcTempHeaterR25OhmNTC sensor nominal resistanceplcTempHeaterLimitKelvinSensor out-of-range upper/lowerplcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVadcVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR5OhmNTC sensor out-of-range upper/lower		Kelvin/Ohm	NTC sensor beta value
plcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR3OhmNTC sensor beta valueplcTempReceiverBeR4Kelvin/OhmNTC sensor nominal resistanceplcTempReceiverBeR4VoltADC reference voltageplcTempReceiverBeR4KelvinSensor out-of-range upper/lowerplcTempReceiverBeR4VoltADC reference voltage		Ohm	NTC sensor nominal resistance
plcVoltageReceiverAdcVoltADC value to voltageplcVoltageReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR5OhmNTC sensor nominal resistanceplcTempReceiverBeR4KelvinSensor out-of-range upper/lower	plcTempHeaterLimit	Kelvin	Sensor out-of-range upper/lower
plcVoltageReceiverLimitVoltOut-of-range upper/lowerplcCurrentReceiverAdcAmpADC value to currentplcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeR4Kelvin/OhmNTC sensor beta valueplcTempReceiverBeR5OhmNTC sensor nominal resistanceplcTempReceiverBeR45OhmNTC sensor out-of-range upper/lowerplcTempReceiverBeLimitKelvinSensor out-of-range upper/lower		Volt	ADC value to voltage
plcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverBeLimitKelvinSensor out-of-range upper/lower		Volt	
plcCurrentReceiverLimitAmpOut-of-range upper/lowerplcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage			
plcTempReceiverBeVadcVoltADC reference voltageplcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage	plcCurrentReceiverLimit	Amp	Out-of-range upper/lower
plcTempReceiverBeVrefVoltNTC circuit reference voltageplcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage			
plcTempReceiverBeR1OhmNTC circuit R1 resistor valueplcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage			
plcTempReceiverBeR2OhmNTC circuit R2 resistor valueplcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage		Ohm	
plcTempReceiverBeR3OhmNTC circuit R3 resistor valueplcTempReceiverBeBetaKelvin/OhmNTC sensor beta valueplcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage		Ohm	NTC circuit R2 resistor value
plcTempReceiverBeR25OhmNTC sensor nominal resistanceplcTempReceiverBeLimitKelvinSensor out-of-range upper/lowerplcTempReceiverFeVadcVoltADC reference voltage	plcTempReceiverBeR3	Ohm	NTC circuit R3 resistor value
plcTempReceiverBeLimit Kelvin Sensor out-of-range upper/lower plcTempReceiverFeVadc Volt ADC reference voltage		Kelvin/Ohm	NTC sensor beta value
plcTempReceiverFeVadc Volt ADC reference voltage	plcTempReceiverBeR25	Ohm	NTC sensor nominal resistance
plcTempReceiverFeVadc Volt ADC reference voltage	plcTempReceiverBeLimit	Kelvin	Sensor out-of-range upper/lower
plcTempReceiverFeVref Volt NTC circuit reference voltage	plcTempReceiverFeVadc	Volt	ADC reference voltage
	plcTempReceiverFeVref	Volt	NTC circuit reference voltage

Table 6-2 Auxiliary data inputs 1(2)

AWS DDB ICD

plcTempReceiverFeR1	Ohm	NTC circuit R1 resistor value
plcTempReceiverFeR2	Ohm	NTC circuit R2 resistor value
plcTempReceiverFeR3	Ohm	NTC circuit R3 resistor value
plcTempReceiverFeBeta	Kelvin/Ohm	NTC sensor beta value
plcTempReceiverFeR25	Ohm	NTC sensor nominal resistance
plcTempReceiverFeLimit	Kelvin	Sensor out-of-range upper/lower
plcTempReceiverLoVadc	Volt	ADC reference voltage
plcTempReceiverLoVref	Volt	NTC circuit reference voltage
plcTempReceiverLoR1	Ohm	NTC circuit R1 resistor value
plcTempReceiverLoR2	Ohm	NTC circuit R2 resistor value
plcTempReceiverLoR3	Ohm	NTC circuit R3 resistor value
plcTempReceiverLoBeta	Kelvin/Ohm	NTC sensor beta value
plcTempReceiverLoR25	Ohm	NTC sensor nominal resistance
plcTempReceiverLoLimit	Kelvin	Sensor out-of-range upper/lower
plcCurrentMotorAdc	Amp	ADC value to current
plcCurrentMotorLimit	Amp	Out-of-range upper/lower
plcTempMotorVadc	Volt	ADC reference voltage
plcTempMotorVref	Volt	NTC circuit reference voltage
plcTempMotorR1	Ohm	NTC circuit R1 resistor value
plcTempMotorR2	Ohm	NTC circuit R2 resistor value
plcTempMotorR3	Ohm	NTC circuit R3 resistor value
plcTempMotorBeta	Kelvin/Ohm	NTC sensor beta value
plcTempMotorR25	Ohm	NTC sensor nominal resistance
plcTempMotorLimit	Kelvin	Sensor out-of-range upper/lower
plcRfAdc2mW	mW	ADC value to milliwatts
plcRfOffsetObct	Kelvin	Effective OBCT temperature offset
plcRfOffsetCold	Kelvin	Effective COLD temperature offset
plcRfLimit	TBD	Out-of-range upper/lower

Table 6-3 Auxiliary data inputs 2(2)

6.1.2 Science packets data

6.1.2.1 Science packet structure

Each instrument data packet contains FOV scene observation, hot/cold calibration load measurement and instrument house-keeping telemetry (static and dynamic) related to a full revolution of the scanning mechanism which operates at ~0.9Hz. The raw data packets are **Little-Endian** byte order, with the exception of the CUC_TIME field which are in **Big-Endian** byte order.

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
HK STATIC	Static Housekeeping, see section 6.4		-	70	0
HK DYNAMIC	Dynamic Housekeeping, see section 6.5		-	104	70
PLSTATUS	Payload Status FDIR flags, see section 6.2		-	17	174
CUC_TIME	CUC timestamp Latched when Scene measurement start Preamble 8 bits Seconds 32bits Fractional seconds 24 bits		cuc	8	191
SPOT[0]	OBCT Spot 1		-	40	199
			-		
SPOT[i-1]	OBCT Spot i			40	749
SPOT[i]	COLD Spot 1		-	40	799
			-		
SPOT[i+j-1]	COLD Spot j		-	40	1751
SPOT[i+j]	SCENE Spot 1			40	1799
SPOT[i+j+k-1]	SCENE Spot k			40	7559
		To	tal size:	7599	

Table 6-4 AWS Science Data packet structure. Note that the references to sections in the "Description" column are not applicable for this document. In this document "section 6.4" is referring to section 6.1.2.2, "section 6.5" to section 6.1.2.4 and "section 6.2" to section 6.1.2.5

The table above illustrates the instrument payload data for one revolution of the instrument mirror. The data has 19 columns (one for each RF band) and i, j, k rows respectively (i hot reference load measurement, j cold target view measurements and k FOV scene observations).

The motor encoder telemetry shall be used to derive the instrument CUC_TIME of each spot measurement considering the mechanism rotating frequency and number of spots senser (i+j+k+2).

AWS DDB ICD

6.1.2.2 HK_STATIC structure

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
PLID	Payload ID, unique for each payload instrument		uint16	2	0
SWPART	Software Part ID		uint16	2	2
SWREV	Software Revision		uint8	1	4
SWTAGX	Software SVN TAG X number		uint8	1	5
SWTAGY	Software SVN TAG Y number		uint8	1	6
SWTAGZ	Software SVN TAG Z number		uint8	1	7
FWPART	FPGA firmware Part ID		uint16	2	8
FWREV	FPGA firmware Revision		uint8	1	10
FWTAGX	FPGA firmware SVN TAG X number		uint8	1	11
FWTAGY	FPGA firmware SVN TAG Y number		uint8	1	12
FWTAGZ	FPGA firmware SVN TAG Z number		uint8	1	13
CONFFILE	Configuration File, see Table 7		-	56	14
	Total size:				

Table 6-5 Static Instrument Housekeeping parameters (HK_STATIC). Note that the reference to "Table 7" in the "Description" column is not applicable for this document. In this document "Table 7" is referring to section 6.1.2.3

6.1.2.3 HK_STATIC Configuration file structure

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
SYS_SCRUBBER	System memory scrubber enable/disable Disabled Enabled, at specified interval in seconds	0 >=1	uint8	1	0
FDIR_EN	FDIR enable/disable. Same format as PLSTATUS data.		uint8	17	1
OBCT_START	OBCT view encoder start position		uint16	2	18
OBCT_SPOTS	OBCT view number of spots	i	uint16	2	20
COLD_START	Cold view encoder start position		uint16	2	22
COLD SPOTS	Cold view number of spots	j	uint16	2	24
SCENE START	Scene view encoder start position		uint16	2	26
SCENE_SPOTS	Scene view number of spots	k	uint16	2	28
SPEED	Motor speed setting		uint8	1	30
ACC_SPOTS	Accumulation for each spot	1, 2, 4, 8, 16	uint8	1	31
INDEX POS	Mirror index position (zero)		uint16	2	32
CONV WAIT	Receiver ADC conversion wait		uint16	2	34
REC ENABLE	Receiver enable/disable	015	uint8	1	36
REC54_LO_POWER	54 GHz receiver LO power	063	uint8	1	37
REC183_LO_POWER	183 GHz receiver LO power	063	uint8	1	38
REC325_LO_POWER	325 GHz receiver LO power	063	uint8	1	39
HEAT_SETP1_MAX	Heater 1 maximum setpoint.		uint16	2	40
HEAT SETP1 MIN	Heater 1 minimum setpoint.		uint16	2	42
HEAT SETP2 MAX	Heater 2 maximum setpoint.		uint16	2	44
HEAT_SETP2_MIN	Heater 2 minimum setpoint.		uint16	2	46
HEAT_SETP3_MAX	Heater 3 maximum setpoint.		uint16	2	48
HEAT_SETP3_MIN	Heater 3 minimum setpoint.		uint16	2	50
HEAT_SETP4_MAX	Heater 4 maximum setpoint.		uint16	2	52
HEAT SETP4 MIN	Heater 4 minimum setpoint.		uint16	2	54
		T	otal size:	56	

Table 6-6 HK_STATIC Configuration File

AWS DDB ICD

6.1.2.4 HK_Dynamic structure

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
PSU TEMP1	PSU temperature sensor 1		uint16	2	0
PSU TEMP2	PSU temperature sensor 2		uint16	2	2
ICU_TIME	ICU real time counter, CUC format Preamble 8 bits, Seconds 32bits Fractional seconds 24 bits		uint64	8	4
ICU EDAC	EDAC status, Number of corrected 1-bit errors		uint16	2	12
ICU_SCRUB	Number of passes though ESRAM memory for scrubber.		uint16	2	14
ICU VOLT	ICU +12V rail voltage		uint16	2	16
ICU CURR	ICU +12V rail current		uint16	2	18
ICU TEMP1	ICU temperature sensor 1		uint16	2	20
ICU TEMP2	ICU temperature sensor 2		uint16	2	22
AUX TEMP1	Auxiliary NTC temperature sensor 1		uint16	2	24
AUX TEMP2	Auxiliary NTC temperature sensor 2		uint16	2	26
AUX TEMP3	Auxiliary NTC temperature sensor 3		uint16	2	28
AUX TEMP4	Auxiliary NTC temperature sensor 4		uint16	2	30
AUX TEMP5	Auxiliary NTC temperature sensor 5		uint16	2	32
AUX TEMP6	Auxiliary NTC temperature sensor 6		uint16	2	34
MOTOR TEMP	Motor temperature sensor		uint16	2	36
MOTOR CURR	Motor current sensor		uint16	2	38
MOTOR AUX	Motor auxiliary sensor		uint16	2	40
MOTOR SPEED	Motor speed		uint16	2	42
OBCT TEMP1	Calibration load temperature sensor 1		uint16	2	44
OBCT TEMP2	Calibration load temperature sensor 2		uint16	2	46
OBCT TEMP3	Calibration load temperature sensor 3		uint16	2	48
OBCT TEMP4	Calibration load temperature sensor 4		uint16	2	50
HEAT_STAT	Heater status. Enabled/On if bit is '1', Disabled/Off if bit is '0'. Bit [7] - Heater 4 On/Off Bit [6] - Heater 3 On/Off Bit [5] - Heater 2 On/Off Bit [4] - Heater 1 On/Off Bit [3] - Heater 4 Enable/Disable Bit [2] - Heater 3 Enable/Disable Bit [1] - Heater 2 Enable/Disable Bit [0] - Heater 1 Enable/Disable		uint8	1	52
HEAT TEMP1	Heater temperature sensor 1		uint16	2	53
HEAT TEMP2	Heater temperature sensor 2		uint16	2	55
HEAT TEMP3	Heater temperature sensor 3		uint16	2	57
HEAT TEMP4	Heater temperature sensor 4		uint16	2	59
REC_STAT	Bit [7.4] - '0' Bit [3] - LCL325 Bit [2] - LCL183 Bit [1] - LCL89 Bit [0] - LCL54		uint8	1	61
REC PACKET CNTR	Receiver packet counter		uint16	2	62

Table 6-7 Dynamic Instrument Housekeeping parameters 1(2) (HK_DYNAMIC)

AWS DDB ICD

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
REC54 VOLT	54 GHz Receiver voltage		uint16	2	64
REC54 CURR	54 GHz Receiver current		uint16	2	66
REC54 TEMP LO	Temperature sense LO		uint16	2	68
REC54 TEMP PWRIO	Temperature sense FE Bias		uint16	2	70
REC54 TEMP FEBIAS	Temperature sense BE		uint16	2	72
REC89 VOLT	89 GHz Receiver voltage		uint16	2	74
REC89 CURR	89 GHz Receiver current		uint16	2	76
REC89_TEMP_LO	Temperature sense LO		uint16	2	78
REC89 TEMP PWRIO	Temperature sense FE Bias		uint16	2	80
REC89 TEMP FEBIAS	Temperature sense BE		uint16	2	82
REC183 VOLT	183 GHz Receiver voltage		uint16	2	84
REC183 CURR	183 GHz Receiver current		uint16	2	86
REC183 TEMP LO	Temperature sense LO		uint16	2	88
REC183 TEMP PWRIO	Temperature sense FE Bias		uint16	2	90
REC183 TEMP FEBIAS	Temperature sense BE		uint16	2	92
REC325 VOLT	325 GHz Receiver voltage		uint16	2	94
REC325 CURR	325 GHz Receiver current		uint16	2	96
REC325 TEMP LO	Temperature sense LO		uint16	2	98
REC325 TEMP PWRIO	Temperature sense FE Bias		uint16	2	100
REC325 TEMP FEBIAS	Temperature sense BE		uint16	2	102
	Total size:				04

Table 6-8 Dynamic Instrument Housekeeping parameters 2(2) (HK_DYNAMIC)

6.1.2.5 Payload Status structure

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
STAT	Bit [7] – LCL325		uint8	1	0
MAIN	Bit [6] – LCL183				
	Bit [5] – LCL89				
	Bit [4] – LCL54				
	Bit [3] – SLOT				
	Nominal ICU	<u>'0'</u>			
	Redundant ICU	'1'			
	Bit [20] – MODE				
	Bootloader Mode	1			
	Startup Mode	2			
	Operation Mode	3			
	Safe Mode	4			
	Test Mode	5			
FAULT	Bit [71] – '0'		uint8	1	1
MAJOR	Bit [0] – BOOT				
SYSTEM	BOOT bit is always set on boot and should be cleared				
	manually to detect any unexpected reboots.				

AWS DDB ICD

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
FAULT MAJOR PCU	Bit [76] - '0' Bit [5] - VOLT_ICU Bit [4] - CURR ICU Bit [3] - TEMP_PSU2 Bit [2] - TEMP_PSU1 Bit [1] - TEMP_ICU2 Bit [0] - TEMP_ICU1		uint8	1	2
FAULT MAJOR MOTOR	Bit [76] - '0' Bit [5] - CURR_CMD Bit [4] - CURR_MEAS Bit [3] - TEMP Bit [2] - ENC_ERR Bit [1] - ENC_HS Bit [0] - ENC_UNRESP		uint8	1	3
FAULT MINOR REC54	Bit [7] - LD Bit [6] - LCL Bit [5] - SPI Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP_LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP_FEBIAS		uint8	1	4
FAULT MINOR REC89	Bit [7] - LD Bit [6] - LCL Bit [5] - SPI Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP_LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP_FEBIAS		uint8	1	5
FAULT MINOR REC183	Bit [7] – LD Bit [6] – LCL Bit [5] – SPI Bit [4] – VOLT Bit [3] – CURR Bit [2] – TEMP LO Bit [1] – TEMP_PWRIO Bit [0] – TEMP FEBIAS		uint8	1	6
FAULT MINOR REC325	Bit [7] – LD Bit [6] – LCL Bit [5] – SPI Bit [4] – VOLT Bit [3] – CURR Bit [2] – TEMP_LO Bit [1] – TEMP_PWRIO Bit [0] – TEMP_FEBIAS		uint8	1	7
WARNING PCU	Bit [7] – PPS Bit [6] – '0' Bit [5] – VOLT_ICU Bit [4] – CURR_ICU Bit [3] – TEMP PSU2 Bit [2] – TEMP_PSU1 Bit [1] – TEMP_ICU2 Bit [0] – TEMP_ICU1		uint8	1	8

AWS DDB ICD

Name	Description	Range	Туре	Size (bytes)	Offset (bytes)
WARNING MOTOR	Bit [75] - '0' Bit [4] - CURR_MEAS Bit [3] - TEMP Bit [20] - '0'		uint8	1	9
WARNING REC54	Bit [75] - '0' Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP_LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP_FEBIAS		uint8	1	10
WARNING REC89	Bit [75] - '0' Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP_LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP FEBIAS		uint8	1	11
WARNING REC183	Bit [75] - '0' Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP_FEBIAS		uint8	1	12
WARNING REC325	Bit [75] - '0' Bit [4] - VOLT Bit [3] - CURR Bit [2] - TEMP_LO Bit [1] - TEMP_PWRIO Bit [0] - TEMP_FEBIAS		uint8	1	13
WARNING HEAT	Bit [74] - '0' Bit [3] - TEMP4 Bit [2] - TEMP3 Bit [1] - TEMP2 Bit [0] - TEMP1		uint8	1	14
WARNING AUX	Bit [76] - '0' Bit [5] - TEMP6 Bit [4] - TEMP5 Bit [3] - TEMP4 Bit [2] - TEMP3 Bit [1] - TEMP2 Bit [0] - TEMP1		uint8	1	15
WARNING OBCT	Bit [74] - '0' Bit [3] - TEMP4 Bit [2] - TEMP3 Bit [1] - TEMP2 Bit [0] - TEMP1		uint8	1	16
		T	otal size:	17	

Figure 6-1 Payload_status parameters

6.1.2.6 CUC_Time structure

The structure of the CUC_TIME field and value of the preamble is specified in section 5.2.3.1.

6.1.2.7 SPOT structure

AWS DDB ICD

Name	Description	Range	Туре	Size	Offset
			uintl6	(bytes)	(bytes)
AWS-11	54 GHz receiver Data, channel 1		uint16	2	0
AWS-12	54 GHz receiver Data, channel 2		uint16	2	2
AWS-13	54 GHz receiver Data, channel 3		uint16	2	4
AWS-14	54 GHz receiver Data, channel 4		uint16	2	6
AWS-15	54 GHz receiver Data, channel 5		uint16	2	8
AWS-16	54 GHz receiver Data, channel 6		uint16	2	10
AWS-17	54 GHz receiver Data, channel 7		uint16	2	12
AWS-18	54 GHz receiver Data, channel 8		uint16	2	14
AWS-21	89 GHz receiver Data, channel 1		uint16	2	16
AWS-31	183 GHz receiver Data, channel 1		uint16	2	18
AWS-32	183 GHz receiver Data, channel 2		uint16	2	20
AWS-33	183 GHz receiver Data, channel 3		uint16	2	22
AWS-34	183 GHz receiver Data, channel 4		uint16	2	24
AWS-35	183 GHz receiver Data, channel 5		uint16	2	26
AWS-36	183 GHz receiver Data, channel 6		uint16	2	28
AWS-41	325 GHz receiver Data, channel 1		uint16	2	30
AWS-42	325 GHz receiver Data, channel 2		uint16	2	32
AWS-43	325 GHz receiver Data, channel 3		uint16	2	34
AWS-44	325 GHz receiver Data, channel 4		uint16	2	36
ENC	Encoder, contingency channel		uint16	2	38
		To	tal size:	40	

Figure 6-2 SPOT parameters

AWS DDB ICD

6.2 NAVATT DATA

The following Navigation and Attitude data – referred as NAVATT – is generated on-board at 1Hz and included in the same data stream as the Instrument Science data packets. It contains the necessary information to perform the instrument data ground processing. The data packets are in **Big-Endian** byte order.

Name	Unit	Туре	Size (Bytes)	Offset	Description
Headers			21	0	Source packet header + Data field header
SID	N/A	uint16	2	21	= 1
Navigation timestamp	Seconds	float64	8	23	AOCS slow core execution time
Orbit number	N/A	uint24	3	31	Per PUS 22
	N/A	uint32	4	34	Based on the angle measured in the plane of the osculating inertial orbit starting from the intersection with the Earth Fixed Equatorial Plane in ascending direction
Orbit Fraction					The Orbit Angle [deg] = 360 * Orbit Fraction / 232, LSB corresponds to an angle of 8.3819e-08deg
PosVel Quality	N/A	uint8	1	38	0 - None (worst) 1 - TLE 2 - Propagation 3 - GNSS (best)
X position	Meter	float32	4	39	Position (J2000)
Y position	Meter	float32	4	43	Position (J2000)
Z position	Meter	float32	4	47	Position (J2000)
X Velocity	Meter/Second	float32	4	51	Velocity (J2000)
Y Velocity	Meter/Second	float32	4	55	Velocity (J2000)
Z Velocity	Meter/Second	float32	4	59	Velocity (J2000)
Attitude timestamp	Seconds	float64	8	63	AOCS Fast Core (selected) Execution Time
Attitude Quality	N/A	uint8	1	71	 0 - None (worst) 1 - Torque only 2 - GYR only 3 - ST1 only 4 - ST2 only 5 - ST1 & ST2 6 - ST1 & GYR only 7 - ST2 & GYR only 8 - ST1 & ST2 & GYR (best)
Quaternion	N/A	float64	4x8	72	Quaternions represent the transformation between ECI frame and Spacecraft Body (SCB) frame
X Rate	Rad/second	float32	4	104	Spacecraft body angular X rate (in spacecraft body frame)

AWS DDB ICD

Y Rate	Rad/second	float32	4	108	Spacecraft body angular Y rate (in spacecraft body frame)
Z Rate	Rad/second	float32	4	112	Spacecraft body angular Z rate (in spacecraft body frame)
Spacecraft Mode	N/A	uint8	1	116	7 – Orbit Maintenance Mode 8 – Payload Operations Mode
Manoeuvre flag	N/A	uint8	1	117	0 – None 1 – EP Firing 2 – Momentum Management 3 – EP Firing + Momentum Management
Payload Mode	N/A	uint8	1	118	0 - Off 1 - Bootloader 2 - Startup 3 - Operation 4 - Safe 5 - Test
SCID	N/A	uint16	2	119	Spacecraft Identification 104 - AWS PFM

Table 6-9 NAVATT packet structure.

ANNEX A CONVENTIONS

A.1 BIT NUMBERING CONVENTIONS

The bit numbering conventions shall be conform to [AD2] (ECSS-E-70-41C).

The following convention is used to identify each bit in an N-bit field:

• The first bit in a field, starting from the left, is defined as "Bit 0", and will be represented as the leftmost justified bit in a figure. The following bit is called "Bit 1", and so on, up to "Bit N-1", the bits being represented in this order from left to right in a figure

The following nomenclature is used to describe adjacent groups of bits within packets:

• 1 octet = 1 byte = 8 bits

A.2 FIELD ALIGNMENT CONVENTIONS

The following convention shall be used to construct packet parameter fields:

- 1. Parameters with a length longer than 16 bits shall be long word aligned, i.e. the LSB shall coincide with the long word boundary.
- 2. Parameters with a length of 16 bits shall be word aligned, i.e. the LSB shall coincide with the word boundary.
- 3. Parameters with a length shorter than 16 bits shall not be allowed to span over word boundaries.
- 4. Parameters with a length shorter than 16 bits but longer than 8 bits shall be rightadjusted within the 16-bit word.
- 5. There shall be no more than two numerical parameters (e.g. counters, analogue) inside a word; they should be right adjusted on the octet boundary.
- 6. Other non-numerical (Status Words, Booleans, enumerated) parameters may be packed tighter than according to 5), but no more than 3) allows.

A.3 DATA STRUCTURE

The following convention is used for the encapsulated data structure:

- Platform Telemetry / NAVATT: Big endian structure
- Instrument science packets: Little endian structure

ANNEX B VIRTUAL CHANNELS

B.1 DOWNLINK

The use of downlink Virtual Channels is described in the following table.

Table 6-10 VCID allocation for TM

VC ID (decimal)	Assignment	Radio band
0	Real-time S/C HK telemetry data	S-band
1	Stored S/C HK telemetry data	S-band or L-band
2	Stored S/C Science telemetry data	S-band or L-band
3	DDB service Real-time S/C Science telemetry data = Instrument science packets + NAVATT	L-band
4	Not used	
5	Not used	
6	Not used	
7	Idle frames	S-band and L-band

AWS DDB ICD

ANNEX C CYCLIC REDUNDANCY CODE (CRC)

A 16 bit CRC shall be used for telecommands and telemetry in conformance with [AD5] (ECSS-E-70-41C).

AWS DDB ICD

ANNEX D LINK BUDGETS

The DDB L-band link budget is established at 5 degrees elevation and clear sky conditions considering a ground station located in Stockholm, Sweden. Local users need to select the receiving antenna based on the link budget below adapted to the receiving location and its specific environment.

The Direct Broadcast Stations must be able to handle a maximum Doppler shift of +/- 43 kHz at an elevation angle of 5 degrees, and a Doppler shift rate of 0.18 kHz/sec at an elevation angle of 90 degrees.

Parameter	NOM	ADV	FAV	Unit
Max communication distance	2317.15	2317.15	2317.15	
Orbit period	96.45	96.45	96.45	min
antenna theta max	65.65			degree
Nominal Mode				
Base Band				
brutto bit rate (coded)	3570.00	3570.00	3570.00	kbps
User bit rate (uncoded)	1561.88	1561.88		
Symbols	4			
Modulation order	2			
Symbol Rate	1785			kS/s
Filter Factor	0.45			
Bandwidth	5177			kHz
Necessary BW	2106			kHz
Doppler	43			kHz
Transmitter				
TX carrier frequency	1.707	1.707	1.707	GHz
TX output power	3.30	3.30	3.30	
RX power consumption (no TX)	2.73	2.86	2.60	w
RX/TX power consumption (at TX)	22.00	22.00	22.00	
RX/TX average power consumption	22.00	22.00	22.00	w
TX output power (dBW)	5.19	5.19	5.19	dBW
TX output power (dBm)	35.19	35.19	35.19	
TX Harness loss	-0.50	-0.70	-0.30	dB
TX antenna gain	0.00	-1.50	1.50	-
Antenna Axial Ratio	1.50	2.50	1.00	
Polarization loss	-0.09	-0.14	-0.06	-
Antenna VSWR	1.3	1.3	1.3	
Antenna VSWR Loss	-0.07	-0.07	-0.07	
EIRP (dBW)	4.52	2.77		dbW
EIRP (W)	2.83	1.89	4.22	
EIRP (dBm)	34.52	32.77	36.25	
Space and atmosphere	0 1102	02177	00.20	ubiii
Free space loss	-164.39	-164.39	-164.39	dB
Other losses (atmosph./rain)	-2.66	-2.66	-2.66	-
Receiver				
RX G/T @5deg	8.50	8.50	8 50	dB/K
Antenna Axial Ratio	2.00	2.00	2.00	
Navigation error (loss)	-0.10	-0.10	-0.10	
C/No	74.47	72.71		dB-Hz
Eb/No	12.53	10.78	14.26	
Channel coding	VR	VR	VR	
Required Eb/No (uncoded)	2.60		-	dB
Tx Implementation loss	1.00	1.00	1.00	
Rx Implementation loss	0.50	0.50	0.50	
Required Eb/No (net)	4.10	4.10	4.10	
Margin	8.43	6.68	10.16	
Required margin	3.00	0.08	3.00	
Margin - Required margin	5.43	6.68	7.16	

Table 6-11 AWS DDB link budget at 5 degrees elevation

ANNEX E ANTENNA PATTERN

The stand-alone L-band antenna radiation gain pattern is presented in this section (as measured).

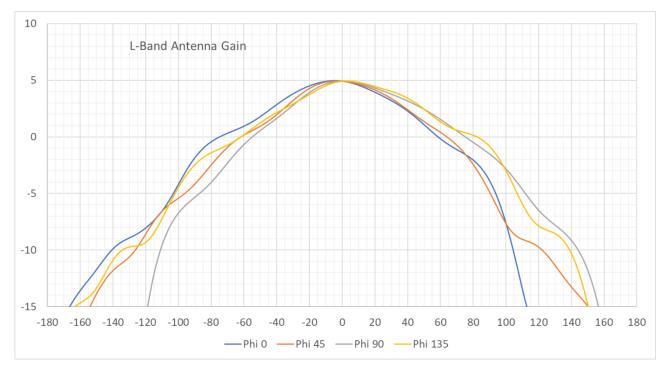


Table 6-12 Co-polar (RHCP) realized gain over elevation (θ) for different azimuth (ϕ)

ANNEX F IDLE DATA DESCRIPTION

For idle data (added at TCM level), 0x5A is the data sent for Idle Frames and Idle Packets.

ANNEX G SPACECRAFT IDENTIFICATION (SCID)

The Spacecraft Identification (SCID) is assigned by the Space Assigned Numbers Authority and is mission specific.

Table 6-13 - SCID

Spacecraft name	Spacecraft CCSDS ID	Spacecraft international COSPAR ID
AWS PFM	x068 (104 dec)	202x-xxxx
AWS-2	TBD	
AWS-16	TBD	